DOI QR코드

DOI QR Code

Impact of the Variation of Sea Breeze Penetration due to Terrain Complexity on PBL Development

해안지형의 복잡성에 따른 해풍침투 변화가 대기경계층에 미치는 영향 분석

  • Park, Soon-Young (Division of Earth Environment System, Pusan National University) ;
  • Lee, Hwa-Woon (Division of Earth Environment System, Pusan National University) ;
  • Lee, Soon-Hwan (Institute of Environment Research, Pusan National University) ;
  • Lee, Kwi-Ok (Atmospheric Environment & Information Research Center, Inje University) ;
  • Ji, Hyo-Eun (Division of Earth Environment System, Pusan National University)
  • 박순영 (부산대학교 지구환경시스템학부) ;
  • 이화운 (부산대학교 지구환경시스템학부) ;
  • 이순환 (부산대학교 환경연구원) ;
  • 이귀옥 (인제대학교 대기환경정보센터) ;
  • 지효은 (부산대학교 지구환경시스템학부)
  • Received : 2010.11.19
  • Accepted : 2011.01.26
  • Published : 2011.02.28

Abstract

In order to clarify the relation between sea breeze penetration and Planetary Boundary Layer development in southeastern part of the Korean Peninsula, several numerical assessments were carried out using atmospheric numerical model WRF(Weather Research and Forecasting). Compared with onset time of sea breeze at eastern coast area(Uljin), the time at southern coast region(Masan) with complex costal line tend to delay for several hours. The penetration patterns of sea breeze between two coastal regions are some different due to the shape of their coastal line and back ground topography. Intensified valley wind due to high topography of lee side of Uljin can help penetration of sea breeze at early time. So penetration of sea breeze at early time often prevent PBL to develop at Uljin and lower PBL height last for a day time. But because of late penetration of sea breeze at Masna, PBL Height dramatically decrease after 1500LST. The distribution of front genesis function based on the heat and momentum variation are explained obviously the sea breeze penetration patterns and agreed well with the PBL height distribution.

Keywords

References

  1. 임헌호, 2000, 부산연안지역에서 해륙풍일의 선정과 기후학적인 특성에 관한 연구, 석사학위논문, 부산대학교.
  2. Bouchlaghem, K., Mansour, F. B., Elouragini, S., 2007, Impact of a sea breeze event on air pollution at the Eastern Tunisian Coast, Atmos. Env., 86(2), 162-172.
  3. Chen, F., Dudhia, J., 2001, Coupling an advanced land-surface/ hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  4. Clappier, A., Martilla, A., Grossi, P., Thunis, P., Pasi, F., Krueger, B.C., Calpini, B., Graziani, G., van den Bergh, H., 2000, Effect of sea breeze on air pollution in Greater Athens area. Part I: numerical simulations and field observations, J. Appl. Meteorol., 39, 546-562. https://doi.org/10.1175/1520-0450(2000)039<0546:EOSBOA>2.0.CO;2
  5. Crosman, E. T., Horel, J. D., 2010, Sea and Lake Breezes: A review of numerical studies, Boundary-Layer Meteorol., 137, 1-29. https://doi.org/10.1007/s10546-010-9517-9
  6. Dudhia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  7. Evtyugina, M. G., Nunes, T., Pio, C., Costa, C. S., 2006, Photochemical pollution under sea breeze conditions, during summer, at the Portuguese West Coast, Atmos. Env., vol. 40(33), 6277-6293. https://doi.org/10.1016/j.atmosenv.2006.05.046
  8. Hong, S. Y., Noh, Y., Dudhia, J., 2006, A new vertical diffusion package with an explicit reatment of entrainment processes, Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  9. Hong, S. Y., and Pan, H. L., 1996, Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast model, Mon. Wea. Rev., 124, 2322-2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
  10. Kain, J. S., Fritsch, J. M., 1993, Convective parameterization for mesoscale models: The Kain-Fritcsh scheme, The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., 246.
  11. Kitada, T., Kitagawa, E., 1990, Numerical analysis of the role of sea breeze fronts on air quality in coastal and inland polluted areas, Atmos. Env., 24(6), 1545-1559. https://doi.org/10.1016/0960-1686(90)90063-S
  12. Lee, H. W., Won, H. Y., Choi, H. J., Kim, H. G., 2005, Numerical simulation of effects of atmospheric flow fields using surface observational data on dispersion fields of air pollutants in Gwangyang bay, Korean J. of Atmos. Env., 21(2), 169-178.
  13. Lee, S. H., Lee, H. W., Kim, Y. K., 2002, Random walk simulation of atmospheric dispersion on surface urbanization over complex terrain, Korean J. of Atmos. Env., 18(2), 67-83.
  14. Lee, S. H., Kim, Y. K., Kim, H. S., Lee, H. W., 2007, Influence of dense surface meteorological data assimilation on the prediction accuracy of ozone pollution in the southeastern coastal area of the Korean Peninsula, Atmos. Env., 41(21), 4451-4465. https://doi.org/10.1016/j.atmosenv.2007.01.050
  15. Mahrt, L., 1985, Vertical structure and turbulence in the very stable boundary layer, J. of Atmos. Sci., 42, 2332-2349.
  16. Melas, D., Kioustioukis, I., Lazaridis, M., 2006, The impact of sea breeze on air quality in the Athens area, Advances in air pollution modelling for environmental security, vol. 54, Springer, Netherlands, 285-295.
  17. Miller, S. T. K., Keim, B. D., Talbot, R. W., Mao, H., 2003, Sea breeze: structure, forecasting, and impacts, Rev. Geophys., 41(3), 1-1.
  18. Mlawer, E. J., Taubman, S. J., Brown, P. D., M. Iacono, J., Clough S. A., 1997, Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102 (D14), 16663-16682. https://doi.org/10.1029/97JD00237
  19. Nieuwstadt, F.T.M., 1984, The turbulent structure of the stable, nocturnal boundary layer, J. of Atmos. Sci., 41, 2202-2216. https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2
  20. Noh, Y., Cheon, W. G., Hong, S. Y., and Raasch, S., 2003, Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data, Bound.-Layer Meteor., 107, 401-427. https://doi.org/10.1023/A:1022146015946
  21. Ryu, C.-S., Shin, Y.-M., Lee, S.-H., 2004, Numerical studies for effects of complicate coastal area on variation of mesoscale circulation, Asia-Pacific J. of Atmos. Sci., 40(1), 71-86, 2004.
  22. Talbot, C., Augustin, P., Leroy, C., Willart, V., Delbarre, H., Khomenko, G., 2007, Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea, Boundary-Layer Meteorol., 125, 133-154. https://doi.org/10.1007/s10546-007-9185-6

Cited by

  1. Estimate and Analysis of Planetary Boundary Layer Height (PBLH) using a Mobile Lidar Vehicle system vol.32, pp.3, 2016, https://doi.org/10.7780/kjrs.2016.32.3.9