DOI QR코드

DOI QR Code

Thickness Dependence of GZO Gas Sensing Films Deposited on LTCC Substrates

LTCC 기판상에 증착한 GZO 가스 센싱 박막의 두께 의존 특성 연구

  • Received : 2010.10.14
  • Accepted : 2011.01.11
  • Published : 2011.03.01

Abstract

A novel design of gas sensor using Ga-doped ZnO (GZO) thin films which are deposited on low temperature co-fired ceramic (LTCC) substrates is presented. The LTCC substrates with thickness of 400 ${\mu}m$ are fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The GZO thin films with different thickness are deposited on LTCC substrates, by RF magnetron sputtering method. The microstructure and sensing properties of GZO gas sensing films are analyzed as a function of the film thickness. The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The maximum sensitivity of 3.49 is obtained at 100 nm film thickness and the fastest 90% response time of 27.2 sec is obtained at 50 nm film thickness for the operating temperature of $400^{\circ}C$ to the $NO_2$ gas.

Keywords

References

  1. Y. S. Lee, B. S. Joo, N. J. Choi, B. H. Kang, and Y. S. Chang, J. Korean Phys. Soc. 37, 862 (2000). https://doi.org/10.3938/jkps.37.862
  2. T. Pisarkiewicz, A. Sutor, P. Potempa, W. Maziarz, H. Thust, and T. Thelemann, Thin Solid Films 436, 84 (2003). https://doi.org/10.1016/S0040-6090(03)00514-5
  3. G. N. Chaudhari1, D. R. Bambole1, A. B. Bodadel, and P. R. Padolel, J. Mater. Sci. 41, 4860 (2006). https://doi.org/10.1007/s10853-006-0042-7
  4. Z. Topalian, J. M. Smulko, G. A. Niklasson, and C. G. Granqvist, Journal of Physics: Conference series 76 (2007).
  5. A. Nemeth, E. Horvath, Z. Labadi, L. Fedak, and I. Barsony, Sens. Actuators B 127, 157 (2007). https://doi.org/10.1016/j.snb.2007.07.091
  6. J. Xu, Q. Pan, Y. Shun, and Z. Tian, Sens. Actuators B 66, 277 (2000). https://doi.org/10.1016/S0925-4005(00)00381-6
  7. F. Chaabouni, M. Abaab, and B. Rezig, Sens. Actuators B 100, 200 (2004). https://doi.org/10.1016/j.snb.2003.12.059
  8. N. Koshizaki and T. Oyama, Sens. Actuators B 66, 119 (2000). https://doi.org/10.1016/S0925-4005(00)00323-3
  9. S. C. Navale, V. Ravi, I. S. Mulla, S. W. Gosavi, and S. K. Kulkarni, Sens. Actuators B 126, 382 (2007). https://doi.org/10.1016/j.snb.2007.03.019
  10. P. K. Song, M. Watanbe, M. Kon, A. Mitsui, and Y. Shigesato, Thin Solid Films 411, 82 (2002). https://doi.org/10.1016/S0040-6090(02)00192-X
  11. J. F. Chang, H. K. Kuo, I. C. Leu, and M. H. Hon, Sens. Actuators B 24, 258 (2002).
  12. C. M. Ghimbeu, J. Schoonman, M. Lumbreras and M. Siadat, Appl. Surf. Sci, 253, 7483 (2007). https://doi.org/10.1016/j.apsusc.2007.03.039
  13. P. S. Cho, K. W. Kim, and J. H. Lee, J. Electroceram. 17, 975 (2006). https://doi.org/10.1007/s10832-006-8146-7
  14. H. S. Hwang, D. H. Yeo, J. H. Kim and J. T. Song, J. KIEEME, 21, 499 (2008).
  15. J. Gong, Q. Chen, W. Fei, and S. Seal, Sens. Actuators B 102, 117 (2004). https://doi.org/10.1016/j.snb.2004.02.055