DOI QR코드

DOI QR Code

RF 파워에 따라 스퍼터된 Al doped ZnO 박막의 구조적, 광학적, 전기적 특성

Structural, Optical, and Electrical Properties of Sputtered Al doped ZnO Thin Film Under Various RF Powers

  • Kim, Jong-Wook (Electronic Engineering, Cheongju University) ;
  • Kim, Deok-Kyu (School of Electronic Engineering, Chungbuk National University) ;
  • Kim, Hong-Bae (School of Electronic and Information Engineering, Cheongju University)
  • 투고 : 2010.12.23
  • 심사 : 2011.02.15
  • 발행 : 2011.03.01

초록

We have studied structural, optical, and electrical properties of the Al-doped ZnO (AZO) thin films being usable in transparent conducting oxides. The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of AZO for transparent conducting oxides, the RF power in sputtering process was varied as 40 W, 60 W, and 80 W, respectively. As RF power increased, the crystallinity of AZO thin film was decreased, the optical bandgap of AZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in RF power. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with increasing RF power. The structural, optical, and electrical properties of the AZO thin films were affected by Al dopant content in AZO thin film.

키워드

참고문헌

  1. Z. Y. Wang, L. Z. Hu, J. Zhao, J. Sun, Z. J. Wang, Vacuum, 78, 53 (2005). https://doi.org/10.1016/j.vacuum.2004.12.014
  2. G. Frank, E. Kauer, H. Kostlin, F. J. Schmitte, Solar Energy Materials, 8, 387 (1983). https://doi.org/10.1016/0165-1633(83)90004-7
  3. B. K. Choi, D. H. Chang, Y. S. Yoon, S. J. Kang, J. Mater. Sci: Mater. Electron, 17, 1011 (2006). https://doi.org/10.1007/s10854-006-9036-0
  4. C. J. Tun, J. K. Sheu, B. J. Pong, M.L. Lee, C. K. Hsieh, C. C. Hu, G. C. Chi, IEEE Photon. Technol. Lett, 18, 274 (2006). https://doi.org/10.1109/LPT.2005.861987
  5. S. Y. Kuo, W. C. Chen, F. I. Lai, J. Cryst. Growth, 287, 78 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.047
  6. S. Zafar, C. S. Ferekides, D .L. Morel, J. Vac. Sci. Technol. A13, 2177 (1955).
  7. T. D. Kang, H. S. Lee, W. I. Park, G. C Yi. J. Korean Pyhs. Soc, 44, 129 (2004).
  8. M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, C. H. Park, Phys. Stat. Sol. (a), 203, 2418 (2006). https://doi.org/10.1002/pssa.200521398
  9. K. H. Kim, K. C. Park, D. Y. Ma, J. Appl. Phys, 81, 7764 (1997). https://doi.org/10.1063/1.365556
  10. Y. Zhang, G. Du, B. Liu, J. Cryst. Growth, 262, 456 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.079
  11. D. H. Kong, W. C. Choi, Y. C. Shin, J. H. Park, T. G. Kim, J. Korean. Phys. Soc, 48, 1214 (2006).
  12. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth, 184/185, 605 (1998). https://doi.org/10.1016/S0022-0248(98)80127-9
  13. B. D. Cullity, Elements of X-ray Diffractions, (Addison-Wesley, Reading, 1978) p.102.
  14. X. Chen, W. Guan, G. Fang, X. Z. Zhao, Appl. Surf. Sci, 252, 1561 (2005). https://doi.org/10.1016/j.apsusc.2005.02.137
  15. B. E. Semelius, K. F. Berggren, Z. C. Jin, I. Hamberg, C. G. Granqvist, Phys. Rev. B, 37, 10244 (1988). https://doi.org/10.1103/PhysRevB.37.10244
  16. I. Yasuhiro, S. Hiromi, Thin Solid Films, 199, 223 (1991). https://doi.org/10.1016/0040-6090(91)90004-H