DOI QR코드

DOI QR Code

Thermoelectric Properties of the p-type (Bi0.2Sb0.8)2Te3 with Variation of the Hot-Pressing Temperature

가압소결온도에 따른 p형 (Bi0.2Sb0.8)2Te3 가압소결체의 열전특성

  • Choi, Jung-Yeol (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae-Sung (Department of Materials Science and Engineering, Hongik University)
  • 최정열 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2011.11.08
  • Accepted : 2011.12.16
  • Published : 2011.12.30

Abstract

The p-type $(Bi_{0.2}Sb_{0.8})_2Te_3$ powers were fabricated by mechanical alloying and hot-pressed at temperatures of $350{\sim}550^{\circ}C$. Themoelectric properties of the hot-pressed $(Bi_{0.2}Sb_{0.8})_2Te_3$ were characterized as a function of the hot-pressing temperature. With increasing the hot-pressing temperature from $350^{\circ}C$ to $550^{\circ}C$, the Seebeck coefficient and the electrical resistivity decreased from 237 ${\mu}V/K$ to 210 ${\mu}V/K$ and 2.25 $m{\Omega}-cm$ to 1.34 $m{\Omega}-cm$, respectively. The power factor of the hot-pressed $(Bi_{0.2}Sb_{0.8})_2Te_3$ became larger from $24.95{\times}10^{-4}W/m-K^2$ to $32.85{\times}10^{-4}W/m-K^2$ with increasing the hot-pressing temperature from $350^{\circ}C$ to $550^{\circ}C$. Among the specimens hot-pressed at $350{\sim}550^{\circ}C$, the $(Bi_{0.2}Sb_{0.8})_2Te_3$ hot-pressed at $500^{\circ}C$ exhibited the maximum dimensionless figure-of-merit of 1.09 at $25^{\circ}C$ and 1.2 at $75^{\circ}C$.

p형 $(Bi_{0.2}Sb_{0.8})_2Te_3$ 분말을 기계적 합금화 공정으로 제조하여 가압소결 후 가압소결온도에 따른 열전특성을 분석하였다. 가압소결온도를 $350^{\circ}C$에서 $550^{\circ}C$로 증가시킴에 따라 상온에서 측정한 Seebeck 계수가 237 ${\mu}V/K$에서 210 ${\mu}V/K$로 감소하고 전기비저항이 2.25 $m{\Omega}-cm$에서 1.34 $m{\Omega}-cm$로 감소하였으며, power factor가 $25.0{\times}10^{-4}W/m-K^2$에서 $32.9{\times}10^{-4}W/m-K^2$로 증가하였다. $350{\sim}550^{\circ}C$의 온도범위에서 가압소결한 시편들 중에서, $500^{\circ}C$에서 가압소결한 $(Bi_{0.2}Sb_{0.8})_2Te_3$ 가압소결체가 상온에서 1.09 및 $75^{\circ}C$에서 1.2의 가장 높은 무차원 성능지수를 나타내었다.

Keywords

References

  1. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren and G. Chen, "Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects", Energy Environ. Sci., 2, 466 (2009). https://doi.org/10.1039/b822664b
  2. D. H. Park, M. Y. Kim and T. S. Oh, "Thermoelectric Energyconversion Characteristics of the n-type Bi2$(Te,Se)^3$ Nanocomposites Processed with Carbon Nanotube Dispersion", Current Appl. Phys. 11, S41 (2011). https://doi.org/10.1016/j.cap.2011.07.007
  3. D. H. Park, M. R. Roh, M. Y. Kim and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2010).
  4. Y. H. Yeo, M. Y. Kim and T. S. Oh, "Thermoelectric Characteristics of the p-type $(Bi,Sb)_2Te_3$ Nano-bulk Hot-pressed with Addition of $ZrO_2$ as Nano Inclusions", J. Microelectron. Packag. Soc., 17(3), 51 (2010).
  5. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. -P. Fleurial and P. Gogna, "New Directions for Low-dimensional Thermoelectric Materials", Adv. Mater., 19, 1 (2007).
  6. D. M. Rowe, "Thermoelectric Waste Heat Recovery as a Renewable Energy Source", Inter. J. Inno. Energy Sys. Power, 1(1), 13 (2006).
  7. T. S. Oh, "Thermoelectric Characteristics of the p-type ($(Bi,Sb)_{2}Te_{3}/(Pb,Sn)Te$ Functional Gradient Materials with Variation of the Segment Ratio", J. Electron. Mater., 38,1041 (2009). https://doi.org/10.1007/s11664-009-0707-5
  8. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, "High-thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  9. X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu and X. B. Zhang, "Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-containing Nanocomposites", Appl. Phys. Lett., 86, 62111 (2005). https://doi.org/10.1063/1.1863440
  10. W. M. Yim and F. D. Rosi, "Compound Telluride and Their Alloys for Peltier Cooling-A Review", J. Solid State Electron., 15, 1121 (1972). https://doi.org/10.1016/0038-1101(72)90172-4
  11. J. Horak, K. Cermak, and L. Koudelka, "Energy Formation of Antisite Defects in Doped $Sb_{2}Te_{3}$ and $Bi_{2}Te_{3}$ Crystals", J. Phys. Chem. Solids, 47, 805 (1986). https://doi.org/10.1016/0022-3697(86)90010-7

Cited by

  1. PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성 vol.26, pp.4, 2011, https://doi.org/10.6117/kmeps.2019.26.4.119
  2. 열전소재 성능 증대를 위한 점결함 제어 전략 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.157