DOI QR코드

DOI QR Code

On the genus Rhodella, the emended orders Dixoniellales and Rhodellales with a new order Glaucosphaerales (Rhodellophyceae, Rhodophyta)

  • Scott, Joe (Department of Biology, College of William & Mary) ;
  • Yang, Eun-Chan (Bigelow Laboratory for Ocean Sciences) ;
  • West, John A. (School of Botany, University of Melbourne) ;
  • Yokoyama, Akiko (Structural Biosciences, Graduate School of Life and Environmental Sciences, University of Tsukuba) ;
  • Kim, Hee-Jeong (Bigelow Laboratory for Ocean Sciences) ;
  • De Goer, Susan Loiseaux (11 Rue des Moguerou) ;
  • O'Kelly, Charles J. (Friday Harbor Laboratories, University of Washington) ;
  • Orlova, Evguenia (Department of Biology, College of William & Mary) ;
  • Kim, Su-Yeon (Department of Biology, Chungnam National University) ;
  • Park, Jeong-Kwang (Department of Biology, Chungnam National University) ;
  • Yoon, Hwan-Su (Bigelow Laboratory for Ocean Sciences)
  • Received : 2011.09.30
  • Accepted : 2011.11.19
  • Published : 2011.12.15

Abstract

The marine unicellular red algal genus Rhodella was established in 1970 by L. V. Evans with a single species R. maculata based on nuclear projections into the pyrenoid. Porphyridium violaceum was described by P. Kornmann in 1965 and transferred to Rhodella by W. Wehrmeyer in 1971 based on plastid features and the non-parietal position of the nucleus. Molecular and fine structural evidences have now revealed that Rhodella maculata and R. violacea are one species, so R. violacea has nomenclatural priority and the correct name is Rhodella violacea (Kornmann) Wehrmeyer. The status of families within Rhodellophyceae was examined. The order Dixoniellales and family Dixoniellaceae are emended to include only Dixoniella and Neorhodella. The order Rhodellales and family Rhodellaceae are emended to include Rhodella and Corynoplastis. Glaucosphaera vacuolata Korshikov and the Glaucosphaeraceae Skuja (1954) with an emended description are transferred to the Glaucosphaerales ord. nov.

Keywords

References

  1. Billard, C. & Fresnel, J. 1986. Rhodella cyanea nov. sp., une nouvelle Rhodophyceae unicellulaire. C. R. Acad. Sci. Serie IIII Sci. Vie 302:271-276.
  2. Broadwater, S. T., Scott, J. L., Goss, S. P. A. & Saunders, B. D. 1995. Ultrastructure of vegetative organization and cell division in Glaucosphaera vacuolata Korshikov (Porphyridiales, Rhodophyta). Phycologia 34:351-361. https://doi.org/10.2216/i0031-8884-34-5-351.1
  3. Deason, T. R., Butler, G. L. & Rhyne, C. 1983. Rhodella reticulata sp. nov., a new coccoid Rhodophytan alga (Porphyridiales). J. Phycol. 19:104-111. https://doi.org/10.1111/j.0022-3646.1983.00104.x
  4. Evans, L. V. 1970. Electron microscopical observations on a new red algal unicell, Rhodella maculata gen. nov., sp. nov. Br. Phycol. J. 5:1-13. https://doi.org/10.1080/00071617000650011
  5. Fresnel, J., Billard, C., Hindak, F. & Pekarkova, B. 1989. New observations on Porphyridium griseum Geitler = Rhodella grisea (Geitler) comb. nova (Porphyridiales, Rhodophyceae). Plant Syst. Evol. 164:253-262. https://doi.org/10.1007/BF00940441
  6. Gantt, E. & Conti, S. F. 1965. The ultrastructure of Porphyridium cruentum. J. Cell Biol. 26:365-381. https://doi.org/10.1083/jcb.26.2.365
  7. Gantt, E., Edwards, M. R. & Conti, S. F. 1968. Ultrastructure of Porphyridium aerugineum, a blue-green colored rhodophytan. J. Phycol. 4:65-71. https://doi.org/10.1111/j.1529-8817.1968.tb04678.x
  8. Giraud, G. 1962. Les infrastructures de quelques algues et leur physiologie. J. Microsc. 1:251-274.
  9. Gouy, M., Guindon, S. & Gascuel, O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27:221-224. https://doi.org/10.1093/molbev/msp259
  10. Karsten, U., West, J. A., Zuccarello, G. C., Engbrodt, R., Yokoyama, A., Hara, Y. & Brodie, J. 2003. Low molecular weight carbohydrates of the Bangiophycidae (Rhodophyta). J. Phycol. 39:584-589. https://doi.org/10.1046/j.1529-8817.2003.02192.x
  11. Karsten, U., West, J. A., Zuccarello, G. C., Nixdorf, O., Barrow, K. D. & King, R. J. 1999. Low molecular weight carbohydrate patterns in the Bangiophyceae (Rhodophyta). J. Phycol. 35:967-976. https://doi.org/10.1046/j.1529-8817.1999.3550967.x
  12. Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & McInerney, J. O. 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6:29. https://doi.org/10.1186/1471-2148-6-29
  13. Kornmann, P. 1965. Porphyridium violaceum, eine marine neue Art. Helgol. Wiss. Meeresunters. 12:420-423. https://doi.org/10.1007/BF01612563
  14. Korshikov, A. A. 1930. Glaucosphaera vacuolata, a new member of the Glaucophyceae. Arch. Protistenkunde 70:217-222.
  15. Le, S. Q. & Gascuel, O. 2008. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25:1307-1320. https://doi.org/10.1093/molbev/msn067
  16. Nitschke, U., Boedeker, C., Karsten, U., Hepperle, D. & Eggert, A. 2010. Does the lack of mannitol accumulation in an isolate of Rhodella maculata (Rhodellophyceae, Rhodophyta) from the brackish Baltic Sea indicate a stressed population at the distribution limit? Eur. J. Phycol. 45:436-449. https://doi.org/10.1080/09670262.2010.501908
  17. Parfrey, L. W., Grant, J., Tekle, Y. I., Lasek-Nesselquist, E., Morrison, H. G., Sogin, M. L., Patterson, D. J. & Katz, L. A. 2010. Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst. Biol. 59:518-533. https://doi.org/10.1093/sysbio/syq037
  18. Patrone, L. M., Broadwater, S. T. & Scott, J. L. 1991. Ultrastructure of vegetative and dividing cells of the unicellular red algae Rhodella violacea and Rhodella maculata. J. Phycol. 27:742-753. https://doi.org/10.1111/j.0022-3646.1991.00742.x
  19. Pickett-Heaps, J. D., West, J. A., Wilson, S. M. & McBride, D. L. 2001. Time-lapse video microscopy of cell (spore) movement in red algae. Eur. J. Phycol. 36:9-22. https://doi.org/10.1080/09670260110001735148
  20. Pueschel, C. 1990. Cell structure. In Cole, K. M. & Sheath, R. G. (Eds.) Biology of the Red Algae. Cambridge University Press, New York, pp. 7-41.
  21. Rokas, A. & Carroll, S. B. 2005. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 22:1337-1344. https://doi.org/10.1093/molbev/msi121
  22. Scott, J., Yokoyama, A., Billard, C., Fresnel, J., Hara, Y., West, K. A. & West, J. A. 2008. Neorhodella cyanea, a new genus in the Rhodellophyceae (Rhodophyta). Phycologia 47:560-572. https://doi.org/10.2216/08-27.1
  23. Scott, J. L., Broadwater, S. T., Saunders, B. D., Thomas, J. P. & Gabrielson, P. W. 1992. Ultrastructure of vegetative organization and cell division in the unicellular red alga Dixoniella grisea gen. nov. (Rhodophyta) and a consideration of the genus Rhodella. J. Phycol. 28:649-660. https://doi.org/10.1111/j.0022-3646.1992.00649.x
  24. Skuja, H. 1954. Abteilung: Glaucophyta. In Melchior, H. & Werdermann, E. (Eds.) A. Englers Syllabus der Pflanzenfamilien, 12. Aufl. 1. Band. Borntraeger, Berlin, pp. 56-57.
  25. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  26. Waller, R. F. & McFadden, G. I. 1995. Morphological and cytochemical analysis of an unusual nucleus-pyrenoid association in a unicellular red alga. Protoplasma 186:131-141. https://doi.org/10.1007/BF01281323
  27. Wehrmeyer, W. 1971. Elektronmikroskopische Untersuchung zur Feinstruktur von Porphyridium violaceum Kornmann mit Bemerkungen über seine taxonomische Stellung. Arch. Mikrobiol. 75:121-139. https://doi.org/10.1007/BF00408000
  28. West, J. A. 2005. Long term macroalgal culture maintenance. In Anderson, R. (Ed.) Algal Culturing Techniques. Academic Press, New York, pp. 157-163.
  29. West, J. A., Scott, J. L., West, K. A., Karsten, U., Clayden, S. L. & Saunders, G. W. 2008. Rhodachlya madagascarensis gen. et sp. nov.: a distinct acrochaetioid represents a new order and family (Rhodachlyales ord. nov., Rhodachlyaceae fam. nov.) of the Florideophyceae (Rhodophyta). Phycologia 47:203-212.
  30. Wilson, S. M., Pickett-Heaps, J. D. & West, J. A. 2006. Vesicle transport and the cytoskeleton in the unicellular red alga Glaucosphaera vacuolata. Phycol. Res. 54:15-20. https://doi.org/10.1111/j.1440-1835.2006.00404.x
  31. Wynne, M. J. & Schneider, C. W. 2010. Addendum to the synoptic review of red algal genera. Bot. Mar. 53:291-299. https://doi.org/10.1515/bot.2010.039
  32. Yang, E. C. & Boo, S. M. 2004. Evidence for two independent lineages of Griffithsia (Ceramiaceae, Rhodophyta) based on plastid protein-coding psaA, psbA, and rbcL gene sequences. Mol. Phylogenet. Evol. 31:680-688. https://doi.org/10.1016/j.ympev.2003.08.014
  33. Yang, E. C., Scott, J., West, J. A., Orlova, E., Gauthier, D., Küpper, F. C., Yoon, H. S. & Karsten, U. 2010. New taxa of the Porphyridiophyceae (Rhodophyta): Timspurckia oligopyrenoides gen. et sp. nov. and Erythrolobus madagascarensis sp. nov. Phycologia 49:604-616. https://doi.org/10.2216/09-105.1
  34. Yang, E. C., Scott, J., West, J. A., Yoon, H. S., Yokoyama, A., Karsten, U., Loiseaux de Goer, S. & Orlova, E. 2011. Erythrolobus australicus sp. nov. (Porphyridiophyceae, Rhodophyta): a description based on several approaches. Algae 26:167-180. https://doi.org/10.4490/algae.2011.26.2.167
  35. Yokoyama, A., Sato, K. & Hara, Y. 2004. The generic delimitation of Rhodella (Porphyridiales, Rhodophyta) with emphasis on ultrastructure and molecular phylogeny. Hydrobiologia 512:177-183. https://doi.org/10.1023/B:HYDR.0000020325.08825.14
  36. Yokoyama, A., Scott, J. L., Zuccarello, G. C., Kajikawa, M., Hara, Y. & West, J. A. 2009. Corynoplastis japonica gen. et sp. nov. and Dixoniellales ord. nov. (Rhodellophyceae, Rhodophyta) based on morphological and molecular evidence. Phycol. Res. 57:278-289. https://doi.org/10.1111/j.1440-1835.2009.00547.x
  37. Yoon, H. S., Hackett, J. D. & Bhattacharya, D. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. U. S. A. 99:11724-11729. https://doi.org/10.1073/pnas.172234799
  38. Yoon, H. S., Muller, K. M., Sheath, R. G., Ott, F. D. & Bhattacharya, D. 2006. Defining the major lineages of red algae (Rhodophyta). J. Phycol. 42:482-492. https://doi.org/10.1111/j.1529-8817.2006.00210.x
  39. Yoon, H. S., Zuccarello, G. C. & Bhattacharya, D. 2010. Evolutionary history and taxonomy of red algae. In Seckbach, J. & Chapman, D. J. (Eds.) Red Algae in the Genomic Age: Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Heidelberg, pp. 25-42.

Cited by

  1. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae vol.53, pp.4, 2017, https://doi.org/10.1111/jpy.12547
  2. Highly Conserved Mitochondrial Genomes among Multicellular Red Algae of the Florideophyceae vol.7, pp.8, 2015, https://doi.org/10.1093/gbe/evv147
  3. Evolution: King-Size Plastid Genomes in a New Red Algal Clade vol.27, pp.13, 2017, https://doi.org/10.1016/j.cub.2017.05.038
  4. Viator vitreocola gen. et sp. nov. (Stylonematophyceae), a new red alga on drift glass debris in Oregon and Washington, USA vol.34, pp.2, 2019, https://doi.org/10.4490/algae.2019.34.5.20
  5. Pyrenoids: CO2-fixing phase separated liquid organelles vol.1868, pp.5, 2011, https://doi.org/10.1016/j.bbamcr.2021.118949
  6. A new cryptic species of the unicellular red algal genus Dixoniella (Rhodellophyceae, Proteorhodophytina): Dixoniella giordanoi vol.60, pp.5, 2021, https://doi.org/10.1080/00318884.2021.1984090
  7. Acclimation of photosynthetic apparatus in the mesophilic red alga Dixoniella giordanoi vol.173, pp.3, 2011, https://doi.org/10.1111/ppl.13489