References
- Lipowsky HH. Mechanics of blood flow in the microcirculation. In: Skalak R, Chien S, edtors. Handbook of Bioengineering. New York: McGraw-Hill;1987. p.18-25.
- Nichols WW, O'Rouke MF. McDonald's Blood Flow in Arteries Theoretical, Experimental and Clinical Principles. 4th ed. London: Arnold;1988.
- Dinnar U. Cardiovascular Fluid Dynamics. Boca Raton: CRC Press; 1981.
- Yang WJ. Biothermal-Fluid Sciences Principles and Applications. New York: Hemisphere Pub. Corp;1989.
- Munson BR, Young DF, Okiishi TH, Huebsch WW. Fundamentals of Fluid Mechanics. 6th ed. New York: John Wiley & Sons;2009.
- Pries AR, Secomb TW, Gaehtgens P. Structure and hemodynamics of microvascular networks: heterogeneity and correlations. Am J Physiol 1995;269:H1713-22.
- Lipowsky HH. Blood rheology apects of the microcirculation. In: Ba-skurt OK, Hardeman MR, Rampling MW, Meiselman HJ, editors. Handbook of Hemorheology and Hemodynamics. Washington, DC: IOS Press;2007. p.307-21.
- Cocklet GR, Meiselman HJ. Blood rheology. In: Baskurt OK, Hardeman MR, Rampling MW, Meiselman HJ, editors. Handbook of Hemor-heology and Hemodynamics. Washington, DC: IOS Press;2007. p.45-71.
- Fung YC. Biomechanics. New York: Spriner-Verlag;1981.
- Stoltz JF, Singh M, Riha P. Hemorheology in Practice. Washington, DC: IOS Press;1999.
- Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost 2003;29:435-50. https://doi.org/10.1055/s-2003-44551
- Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035-42. https://doi.org/10.1001/jama.282.21.2035
- de Simone G, Devereux RB, Chien S, Alderman MH, Atlas SA, Laragh JH. Relation of blood viscosity to demographic and physiologic variables and to cardiovascular risk factors in apparently normal adults. Circulation 1990;81:107-17. https://doi.org/10.1161/01.CIR.81.1.107
- Ditzel J, Kampmann J. Whole-blood viscosity, hematocrit and plasma protein in normal subjects at different ages. Acta Physiol Scand 1971; 81:264-8. https://doi.org/10.1111/j.1748-1716.1971.tb04899.x
- Rosenson RS, McCormick A, Uretz EF. Distribution of blood viscosity values and biochemical correlates in healthy adults. Clin Chem 1996; 42:1189-95.
- Mayer GA. Blood viscosity in healthy subjects and patients with coronary heart disease. Can Med Assoc J 1964;91:951-4.
- Letcher RL, Chien S, Pickering TG, Sealey JE, Laragh JH. Direct re-lationship between blood pressure and blood viscosity in normal and hypertensive subjects: role of fibrinogen and concentration. Am J Med 1981;70:1195-202. https://doi.org/10.1016/0002-9343(81)90827-5
- Litwin MS, Chapman K, Stoliar JB. Blood viscosity in the normal man. Surgery 1970;67:342-5.
- Rand PW, Lacombe E, Hunt HE, Austin WH. Viscosity of normal human blood under normothermic and hypothermic conditions. J Appl Physiol 1964;19:117-22.
- Chien S. Blood rheology in myocardial infarction and hypertension. Biorheology 1986;23:633-53.
- Lee BK, Durairaj A, Mehra A, Wenby RB, Meiselman HJ, Alexy T. Microcirculatory dysfunction in cardiac syndrome X: role of abnormal blood rheology. Microcirculation 2008;15:451-9. https://doi.org/10.1080/10739680701797090
- Tsuda Y, Satoh K, Kitadai M, Takahashi T. Hemorheologic profiles of plasma fibrinogen and blood viscosity from silent to acute and ch-ronic cerebral infarctions. J Neurol Sci 1997;147:49-54. https://doi.org/10.1016/S0022-510X(96)05309-9
- Coull BM, Beamer N, de Garmo P, et al. Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk fac-tors for stroke. Stroke 1991;22:162-8. https://doi.org/10.1161/01.STR.22.2.162
- Dormandy JA, Hoare E, Postlethwaite J. Importance of blood viscosi-ty: rheological claudication. Proc R Soc Med 1974;67:446-7.
- Sloop GD, Mercante DE. Opposite effects of low-density and high-den-sity lipoprotein on blood viscosity in fasting subjects. Clin Hemorheol Microcirc 1998;19:197-203.
- Fantl P, Ward HA. Molecular weight of human fibrinogen derived from phosphorus determinations. Biochem J 1965;96:886-9.
- Pulanic D, Rudan I. The past decade: fibrinogen. Coll Antropol 2005; 29:341-9.
- Moriarty PM, Gibson CA. Association between hematological parameters and high-density lipoprotein cholesterol. Curr Opin Cardiol 2005;20:318-23. https://doi.org/10.1097/01.hco.0000167722.22453.47
- Banerjee AK, Pearson J, Gilliland EL, et al. A six year prospective study of fibrinogen and other risk factors associated with mortality in stable claudicants. Thromb Haemost 1992;68:261-3.
- Sloop GD, Garber DW. The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin Sci (Lond) 1997; 92:473-9.
- Bachorik PS, Levy RI, Rifkind BM. Lipids and dyslipoproteinemia. In: Henry JB, editor. Clinical Diagnosis and Management by Laboratory Methods. 20th ed. Philadelphia: WB Saunders;2001. p.1-2.
- Hall JE. Guyton and Hall Textbook of Medical Physiology. 12th ed. Philadlephia: WB Saunders;2011.
- Cho YI, Kensey KR. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel: part 1: steady flows. Biorheology 1991;28:241-62.
- Besarab A, Bolton WK, Browne JK, et al. The effects of normal as com-pared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 1998;339: 584-90. https://doi.org/10.1056/NEJM199808273390903
- Drüeke TB, Locatelli F, Clyne N, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 2006;355:2071-84. https://doi.org/10.1056/NEJMoa062276
- Singh AK, Szczech L, Tang KL, et al. Correction of anemia with epoe-tin alfa in chronic kidney disease. N Engl J Med 2006;355:2085-98. https://doi.org/10.1056/NEJMoa065485
- Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med 2009; 361:2019-32. https://doi.org/10.1056/NEJMoa0907845
- Kameneva MV, Watach MJ, Borovetz HS. Gender difference in oxygen delivery index: potential link to development of cardiovascular diseases. Appl Cardiopulm Pathophysiol 2000;9:382-7.
- Usami S, Chien S, Gregersen MI. Viscometric characteristics of blood of the elephant, man, dog, sheep, and goat. Am J Physiol 1969;217: 884-90.
- Alexy T, Pais E, Armstrong JK, Meiselman HJ, Johnson CS, Fisher TC. Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy. Transfusion 2006;46:912-8. https://doi.org/10.1111/j.1537-2995.2006.00823.x
- Kenyeres P, Juricskay I, Tarsoly P, et al. Low hematocrit per blood vis-cosity ratio as a mortality risk factor in coronary heart disease. Clin Hemorheol Microcirc 2008;38:51-6.
- Ando J, Yamamoto K. Vascular mechanobiology: endothelial cell res-ponses to fluid shear stress. Circ J 2009;73:1983-92. https://doi.org/10.1253/circj.CJ-09-0583
- Malek AM, Izumo S, Alper SL. Modulation by pathophysiological sti-muli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells. Neurosurgery 1999;45:334-44; discussion 344-5. https://doi.org/10.1097/00006123-199908000-00028
- White CR, Frangos JA. The shear stress of it all: the cell membrane and mechanochemical transduction. Philos Trans R Soc Lond B Biol Sci 2007;362:1459-67. https://doi.org/10.1098/rstb.2007.2128
- Glagov S, Zarins C, Giddens DP, Ku DN. Hemodynamics and athero-sclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 1988;112:1018-31.
- Malek AM, Jiang L, Lee I, Sessa WC, Izumo S, Alper SL. Induction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G-protein signals and is modulated by PI 3 kinase. Biochem Biophys Res Commun 1999;254:231-42. https://doi.org/10.1006/bbrc.1998.9921
- Chachisvilis M, Zhang YL, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 2006;103:15463-8. https://doi.org/10.1073/pnas.0607224103
- Eng E, Ballermann BJ. Diminished NF-kappaB activation and PD-GF-B expression in glomerular endothelial cells subjected to chronic shear stress. Microvasc Res 2003;65:137-44. https://doi.org/10.1016/S0026-2862(03)00004-9
- Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 2005;38:1949-71. https://doi.org/10.1016/j.jbiomech.2004.09.030
- Lipowsky HH. Microvascular rheology and hemodynamics. Microcirculation 2005;12:5-15. https://doi.org/10.1080/10739680590894966
- Amann K, Breitbach M, Ritz E, Mall G. Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol 1998;9:1018-22.
- Merrill EW, Cokelet GC, Britten A, Wells RE Jr. Non-Newtonian rheology of human blood: effect of fibrinogen deduced by "subtraction". Circ Res 1963;13:48-55. https://doi.org/10.1161/01.RES.13.1.48
- Copley AL, King RG. Rheogoniometric viscosity measurements of whole human blood at minimal shear rates down to 0.0009 sec-1. Ex-perientia 1970;26:904-5.
- Merrill EW, Gilliland ER, Cokelet G, Shin H, Britten A, Wells RE Jr. Rheology of human blood, near and at zero flow: effects of temperature and hematocrit level. Biophys J 1963;3:199-213. https://doi.org/10.1016/S0006-3495(63)86816-2
- Merrill EW, Cheng CS, Pelletier GA. Yield stress of normal human blood as a function of endogenous fibrinogen. J Appl Physiol 1969;26: 1-3.
- Yeow YL, Wickramasinghe SR, Leong YK, Han B. Model-independent relationships between hematocrit, blood viscosity, and yield stress derived from Couette viscometry data. Biotechnol Prog 2002;18: 1068-75. https://doi.org/10.1021/bp025558k
- Picart C, Piau JM, Galliard H, Carpentier PH. Threshold of shear st-ress in human blood for healthy and sick subjects. J Mal Vasc 1998; 23:113-8.
- Errill EW. Rheology of blood. Physiol Rev 1969;49:863-88.
- Zydney AL, Oliver JD III, Colton CK. A constitutive equation for the viscosity of stored red cell suspensions: effects of hematocrit, shear rate, and suspending phase. J Rheol 1991;35:1639-80. https://doi.org/10.1122/1.550249
- Picart C, Piau JM, Galliard H, Carpentier PH. Blood yield stress and its Hematocrit Dependence. J Rheol 1998;42:1-12. https://doi.org/10.1122/1.550883
- Chien S, Usami S, Taylor HM, Lundberg JL, Gregersen MI. Effects of hematocrit and plasma proteins on human blood rheology at low sh-ear rates. J Appl Physiol 1966;21:81-7.
- Morris CL, Smith CM 2nd, Blackshear PL Jr. A new method for measuring the yield stress in thin layers of sedimenting blood. Biophys J 1987;52:229-40. https://doi.org/10.1016/S0006-3495(87)83210-1
- Picart C, Carpentier PH, Galliard H, Piau JM. Blood yield stress in sys-temic sclerosis. Am J Physiol 1999;276:H771-7.
- Yu PK, Balaratnasingam C, Cringle SJ, McAllister IL, Provis J, Yu DY. Microstructure and network organization of the microvasculature in the human macula. Invest Ophthalmol Vis Sci 2010;51:6735-43. https://doi.org/10.1167/iovs.10-5415
- Jung F, Pindur G, Hiebl B, Franke RP. Influence of capillary geometry on hypoperfusion-induced ischemia: a numerical study. Appl Cardiopulm Pathophysiol 2010;14:229-35.
- Benedict KF, Coffin GS, Barrett EJ, Skalak TC. Hemodynamic systems analysis of capillary network remodeling during the progression of type 2 diabetes. Microcirculation 2011;18:63-73. https://doi.org/10.1111/j.1549-8719.2010.00069.x
- Shea SM, Raskova J. Glomerular hemodynamics and vascular structure in uremia: a network analysis of glomerular path lengths and maximal blood transit times computed for a microvascular model reconstructed from subserial ultrathin sections. Microvasc Res 1984; 28:37-50. https://doi.org/10.1016/0026-2862(84)90027-X
- McManus BM, Allard MF, Yanagawa R. Hemodynamic Disorders. In: Rubin R, Strayer DS, Rubin E, editors. Rubin's Pathology: Clinicopathologic Foundations of Medicine. 5th ed. Baltimore: Lippincott Wil-liams & Wilkins;2008. p.229-30.
- Payman R, Lyon MJ. Rat utricular macula: blood flow and stereolo-gical assessment of capillary morphology. Ann Otol Rhinol Laryngol 1993;102:893-9.
- Arend O, Wolf S, Jung F, et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifo-veal capillary network. Br J Ophthalmol 1991;75:514-8. https://doi.org/10.1136/bjo.75.9.514
- Lubbers DW. Microcirculation and O2 exchange through the skin surface: a theoretical analysis. Adv Exp Med Biol 1994;361:51-8.
- Lubbers DW, Baumgartl H. Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. Kidney Int 1997;51:372-80. https://doi.org/10.1038/ki.1997.49
- Chaturani P, Narasimman S. Theory for flow of Casson and Herschel-Bulkley fluids in cone-plate viscometers. Biorheology 1988;25:199-207.
Cited by
- Changes in Whole Blood Viscosity at Low Shear Rates Correlate with Intravascular Volume Changes during Hemodialysis vol.35, pp.6, 2011, https://doi.org/10.5301/ijao.5000107
- NoninvasiveIn-vivoMeasurements of Microvessels by Reflection-Type Micro Multipoint Laser Doppler Velocimeter vol.51, pp.3, 2011, https://doi.org/10.7567/jjap.51.032701
- Reply to Pancheva, Panchev, and Pancheva vol.115, pp.3, 2013, https://doi.org/10.1152/japplphysiol.00544.2013
- <i>De novo</i> cavernous aneurysms development after contralateral parent artery occlusion—Two cases report vol.3, pp.4, 2011, https://doi.org/10.4236/ojcd.2013.34032
- Analysis of the Magnetic Field Influence on the Rheological Properties of Healthy Persons Blood vol.2013, pp.None, 2011, https://doi.org/10.1155/2013/490410
- Reduction of low-density lipoprotein cholesterol, plasma viscosity, and whole blood viscosity by the application of pulsed corona discharges and filtration vol.84, pp.3, 2013, https://doi.org/10.1063/1.4797478
- The predictive value of retinal vascular findings for carotid artery atherosclerosis: are further recommendations with regard to carotid atherosclerosis screening needed? vol.28, pp.3, 2013, https://doi.org/10.1007/s00380-012-0258-1
- Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases vol.6, pp.5, 2014, https://doi.org/10.1039/c4ib00025k
- Cardiovascular benefits of phlebotomy: relationship to changes in hemorheological variables vol.29, pp.2, 2011, https://doi.org/10.1177/0267659113505637
- Grounding the Human Body during Yoga Exercise with a Grounded Yoga Mat Reduces Blood Viscosity vol.5, pp.4, 2011, https://doi.org/10.4236/ojpm.2015.54019
- Hemorheology in experimental research: is it necessary to consider blood fluidity differences in the laboratory rat? vol.49, pp.2, 2011, https://doi.org/10.1177/0023677214555783
- Fluid-Structure Interaction Model of a Percutaneous Aortic Valve: Comparison with an In Vitro Test and Feasibility Study in a Patient-Specific Case vol.44, pp.2, 2011, https://doi.org/10.1007/s10439-015-1429-x
- A review of hemorheology: Measuring techniques and recent advances vol.28, pp.1, 2011, https://doi.org/10.1007/s13367-016-0001-z
- Efficacy of umbilical cord-derived mesenchymal stem cell-based therapy for osteonecrosis of the femoral head: A three-year follow-up study vol.14, pp.5, 2011, https://doi.org/10.3892/mmr.2016.5745
- Hemorheological abnormalities and their associations with coronary blood flow in patients with cardiac syndrome X: a comparison between males and females vol.32, pp.1, 2017, https://doi.org/10.1177/0267659116661052
- Reduced amputation rate with isovolemic hemodilution in critical limb ischemia patients vol.67, pp.2, 2011, https://doi.org/10.3233/ch-120108
- Changes in whole blood viscosity during hemodialysis and mortality in patients with end-stage renal disease vol.65, pp.3, 2017, https://doi.org/10.3233/ch-16183
- Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations vol.17, pp.9, 2011, https://doi.org/10.3390/s17092037
- Periodic and simultaneous quantification of blood viscosity and red blood cell aggregation using a microfluidic platform underin-vitroclosed-loop circulation vol.12, pp.2, 2011, https://doi.org/10.1063/1.5017052
- The relationship between hypercholesterolemia as a risk factor for stroke and blood viscosity measured using Digital Microcapillary® vol.1073, pp.None, 2018, https://doi.org/10.1088/1742-6596/1073/4/042045
- Effects of Grounding (Earthing) on Massage Therapists: An Exploratory Study vol.10, pp.2, 2018, https://doi.org/10.4236/health.2018.102019
- Hemoglobin levels during the first trimester of pregnancy are associated with the risk of gestational diabetes mellitus, pre-eclampsia and preterm birth in Chinese women: a retrospective study vol.18, pp.None, 2011, https://doi.org/10.1186/s12884-018-1800-7
- Effect of diet on blood viscosity in healthy humans: a systematic review vol.10, pp.3, 2011, https://doi.org/10.19082/6563
- Inertia flows of Bingham fluids through a planar channel: Hydroelastic instability analysis vol.232, pp.13, 2011, https://doi.org/10.1177/0954406217711470
- Estimating the discretization dependent accuracy of perfusion in coupled capillary flow measurements vol.13, pp.7, 2018, https://doi.org/10.1371/journal.pone.0200521
- Microfluidic-Based Technique for Measuring RBC Aggregation and Blood Viscosity in a Continuous and Simultaneous Fashion vol.9, pp.9, 2011, https://doi.org/10.3390/mi9090467
- Therapeutic Effect and Mechanism Study of Rhodiola wallichiana var. cholaensis Injection to Acute Blood Stasis Using Metabolomics Based on UPLC-Q/TOF-MS vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/1514845
- Promotion of whole blood rheology after vitamin C supplementation: focus on red blood cells vol.97, pp.9, 2011, https://doi.org/10.1139/cjpp-2018-0735
- The Product of Red Blood Cells and Hematocrit Can Be Used as a Novel Indicator of Impaired Fasting Blood Glucose Status vol.13, pp.None, 2011, https://doi.org/10.2147/dmso.s270276
- Shear Thinning in the Prandtl Model and Its Relation to Generalized Newtonian Fluids vol.8, pp.4, 2011, https://doi.org/10.3390/lubricants8040038
- The Effect of Electroacupuncture on Plasma Fibrinogen Levels in Restraint Stress Wistar Rats vol.32, pp.2, 2011, https://doi.org/10.1089/acu.2019.1370
- A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix vol.20, pp.10, 2011, https://doi.org/10.1039/d0lc00059k
- Open sessile droplet viscometer with low sample consumption vol.20, pp.10, 2020, https://doi.org/10.1039/d0lc00248h
- Hematological Characteristics and Erythrokinetic Indiсes in Little Ground Squirrels During Arousal from Hibernation vol.30, pp.2, 2011, https://doi.org/10.15407/cryo30.02.132
- Blood viscosity and its determinants in the highest city in the world vol.598, pp.18, 2011, https://doi.org/10.1113/jp279694
- Erythrocyte deformability reduction in various pediatric hematologic diseases vol.75, pp.3, 2011, https://doi.org/10.3233/ch-200817
- A Review of Red Yeast Rice, a Traditional Fermented Food in Japan and East Asia: Its Characteristic Ingredients and Application in the Maintenance and Improvement of Health in Lipid Metabolism and the vol.26, pp.6, 2021, https://doi.org/10.3390/molecules26061619
- Association of blood viscosity with first-pass reperfusion in mechanical thrombectomy for acute ischemic stroke vol.77, pp.2, 2011, https://doi.org/10.3233/ch-200979
- Fractional calculus tracer kinetic compartment model for quantification of microvascular perfusion vol.42, pp.6, 2021, https://doi.org/10.1088/1361-6579/ac067c
- Quantitative Monitoring of Dynamic Blood Flows Using Coflowing Laminar Streams in a Sensorless Approach vol.11, pp.16, 2011, https://doi.org/10.3390/app11167260
- Effects of Thyroid Hormone on Tissue Hypoxia: Relevance to Sepsis Therapy vol.10, pp.24, 2021, https://doi.org/10.3390/jcm10245855