DOI QR코드

DOI QR Code

Hemorheology and Microvascular Disorders

  • Cho, Young-Il (Department of Mechanical Engineering and Mechanics, Drexel University Philadelphia) ;
  • Cho, Daniel J. (Rheovector LLC, Pennsauken)
  • Published : 2011.06.30

Abstract

The present review presents basic concepts of blood rheology related to vascular diseases. Blood flow in large arteries is dominated by inertial forces exhibited at high flow velocities, while viscous forces (i.e., blood rheology) play an almost negligible role. When high flow velocity is compromised by sudden deceleration as at a bifurcation, endothelial cell dysfunction can occur along the outer wall of the bifurcation, initiating inflammatory gene expression and, through mechanotransduction, the cascade of events associated with atherosclerosis. In sharp contrast, the flow of blood in microvessels is dominated by viscous shear forces since the inertial forces are negligible due to low flow velocities. Shear stress is a critical parameter in microvascular flow, and a force-balance approach is proposed for determining microvascular shear stress, accounting for the low Reynolds numbers and the dominance of viscous forces over inertial forces. Accordingly, when the attractive forces between erythrocytes (represented by the yield stress of blood) are greater than the shear force produced by microvascular flow, tissue perfusion itself cannot be sustained, leading to capillary loss. The yield stress parameter is presented as a diagnostic candidate for future clinical research, specifically, as a fluid dynamic biomarker for microvascular disorders. The relation between the yield stress and diastolic blood viscosity (DBV) is described using the Casson model for viscosity, from which one may be able determine thresholds of DBV where the risk of microvascular disorders is high.

Keywords

References

  1. Lipowsky HH. Mechanics of blood flow in the microcirculation. In: Skalak R, Chien S, edtors. Handbook of Bioengineering. New York: McGraw-Hill;1987. p.18-25.
  2. Nichols WW, O'Rouke MF. McDonald's Blood Flow in Arteries Theoretical, Experimental and Clinical Principles. 4th ed. London: Arnold;1988.
  3. Dinnar U. Cardiovascular Fluid Dynamics. Boca Raton: CRC Press; 1981.
  4. Yang WJ. Biothermal-Fluid Sciences Principles and Applications. New York: Hemisphere Pub. Corp;1989.
  5. Munson BR, Young DF, Okiishi TH, Huebsch WW. Fundamentals of Fluid Mechanics. 6th ed. New York: John Wiley & Sons;2009.
  6. Pries AR, Secomb TW, Gaehtgens P. Structure and hemodynamics of microvascular networks: heterogeneity and correlations. Am J Physiol 1995;269:H1713-22.
  7. Lipowsky HH. Blood rheology apects of the microcirculation. In: Ba-skurt OK, Hardeman MR, Rampling MW, Meiselman HJ, editors. Handbook of Hemorheology and Hemodynamics. Washington, DC: IOS Press;2007. p.307-21.
  8. Cocklet GR, Meiselman HJ. Blood rheology. In: Baskurt OK, Hardeman MR, Rampling MW, Meiselman HJ, editors. Handbook of Hemor-heology and Hemodynamics. Washington, DC: IOS Press;2007. p.45-71.
  9. Fung YC. Biomechanics. New York: Spriner-Verlag;1981.
  10. Stoltz JF, Singh M, Riha P. Hemorheology in Practice. Washington, DC: IOS Press;1999.
  11. Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost 2003;29:435-50. https://doi.org/10.1055/s-2003-44551
  12. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035-42. https://doi.org/10.1001/jama.282.21.2035
  13. de Simone G, Devereux RB, Chien S, Alderman MH, Atlas SA, Laragh JH. Relation of blood viscosity to demographic and physiologic variables and to cardiovascular risk factors in apparently normal adults. Circulation 1990;81:107-17. https://doi.org/10.1161/01.CIR.81.1.107
  14. Ditzel J, Kampmann J. Whole-blood viscosity, hematocrit and plasma protein in normal subjects at different ages. Acta Physiol Scand 1971; 81:264-8. https://doi.org/10.1111/j.1748-1716.1971.tb04899.x
  15. Rosenson RS, McCormick A, Uretz EF. Distribution of blood viscosity values and biochemical correlates in healthy adults. Clin Chem 1996; 42:1189-95.
  16. Mayer GA. Blood viscosity in healthy subjects and patients with coronary heart disease. Can Med Assoc J 1964;91:951-4.
  17. Letcher RL, Chien S, Pickering TG, Sealey JE, Laragh JH. Direct re-lationship between blood pressure and blood viscosity in normal and hypertensive subjects: role of fibrinogen and concentration. Am J Med 1981;70:1195-202. https://doi.org/10.1016/0002-9343(81)90827-5
  18. Litwin MS, Chapman K, Stoliar JB. Blood viscosity in the normal man. Surgery 1970;67:342-5.
  19. Rand PW, Lacombe E, Hunt HE, Austin WH. Viscosity of normal human blood under normothermic and hypothermic conditions. J Appl Physiol 1964;19:117-22.
  20. Chien S. Blood rheology in myocardial infarction and hypertension. Biorheology 1986;23:633-53.
  21. Lee BK, Durairaj A, Mehra A, Wenby RB, Meiselman HJ, Alexy T. Microcirculatory dysfunction in cardiac syndrome X: role of abnormal blood rheology. Microcirculation 2008;15:451-9. https://doi.org/10.1080/10739680701797090
  22. Tsuda Y, Satoh K, Kitadai M, Takahashi T. Hemorheologic profiles of plasma fibrinogen and blood viscosity from silent to acute and ch-ronic cerebral infarctions. J Neurol Sci 1997;147:49-54. https://doi.org/10.1016/S0022-510X(96)05309-9
  23. Coull BM, Beamer N, de Garmo P, et al. Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk fac-tors for stroke. Stroke 1991;22:162-8. https://doi.org/10.1161/01.STR.22.2.162
  24. Dormandy JA, Hoare E, Postlethwaite J. Importance of blood viscosi-ty: rheological claudication. Proc R Soc Med 1974;67:446-7.
  25. Sloop GD, Mercante DE. Opposite effects of low-density and high-den-sity lipoprotein on blood viscosity in fasting subjects. Clin Hemorheol Microcirc 1998;19:197-203.
  26. Fantl P, Ward HA. Molecular weight of human fibrinogen derived from phosphorus determinations. Biochem J 1965;96:886-9.
  27. Pulanic D, Rudan I. The past decade: fibrinogen. Coll Antropol 2005; 29:341-9.
  28. Moriarty PM, Gibson CA. Association between hematological parameters and high-density lipoprotein cholesterol. Curr Opin Cardiol 2005;20:318-23. https://doi.org/10.1097/01.hco.0000167722.22453.47
  29. Banerjee AK, Pearson J, Gilliland EL, et al. A six year prospective study of fibrinogen and other risk factors associated with mortality in stable claudicants. Thromb Haemost 1992;68:261-3.
  30. Sloop GD, Garber DW. The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin Sci (Lond) 1997; 92:473-9.
  31. Bachorik PS, Levy RI, Rifkind BM. Lipids and dyslipoproteinemia. In: Henry JB, editor. Clinical Diagnosis and Management by Laboratory Methods. 20th ed. Philadelphia: WB Saunders;2001. p.1-2.
  32. Hall JE. Guyton and Hall Textbook of Medical Physiology. 12th ed. Philadlephia: WB Saunders;2011.
  33. Cho YI, Kensey KR. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel: part 1: steady flows. Biorheology 1991;28:241-62.
  34. Besarab A, Bolton WK, Browne JK, et al. The effects of normal as com-pared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 1998;339: 584-90. https://doi.org/10.1056/NEJM199808273390903
  35. Drüeke TB, Locatelli F, Clyne N, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 2006;355:2071-84. https://doi.org/10.1056/NEJMoa062276
  36. Singh AK, Szczech L, Tang KL, et al. Correction of anemia with epoe-tin alfa in chronic kidney disease. N Engl J Med 2006;355:2085-98. https://doi.org/10.1056/NEJMoa065485
  37. Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med 2009; 361:2019-32. https://doi.org/10.1056/NEJMoa0907845
  38. Kameneva MV, Watach MJ, Borovetz HS. Gender difference in oxygen delivery index: potential link to development of cardiovascular diseases. Appl Cardiopulm Pathophysiol 2000;9:382-7.
  39. Usami S, Chien S, Gregersen MI. Viscometric characteristics of blood of the elephant, man, dog, sheep, and goat. Am J Physiol 1969;217: 884-90.
  40. Alexy T, Pais E, Armstrong JK, Meiselman HJ, Johnson CS, Fisher TC. Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy. Transfusion 2006;46:912-8. https://doi.org/10.1111/j.1537-2995.2006.00823.x
  41. Kenyeres P, Juricskay I, Tarsoly P, et al. Low hematocrit per blood vis-cosity ratio as a mortality risk factor in coronary heart disease. Clin Hemorheol Microcirc 2008;38:51-6.
  42. Ando J, Yamamoto K. Vascular mechanobiology: endothelial cell res-ponses to fluid shear stress. Circ J 2009;73:1983-92. https://doi.org/10.1253/circj.CJ-09-0583
  43. Malek AM, Izumo S, Alper SL. Modulation by pathophysiological sti-muli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells. Neurosurgery 1999;45:334-44; discussion 344-5. https://doi.org/10.1097/00006123-199908000-00028
  44. White CR, Frangos JA. The shear stress of it all: the cell membrane and mechanochemical transduction. Philos Trans R Soc Lond B Biol Sci 2007;362:1459-67. https://doi.org/10.1098/rstb.2007.2128
  45. Glagov S, Zarins C, Giddens DP, Ku DN. Hemodynamics and athero-sclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 1988;112:1018-31.
  46. Malek AM, Jiang L, Lee I, Sessa WC, Izumo S, Alper SL. Induction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G-protein signals and is modulated by PI 3 kinase. Biochem Biophys Res Commun 1999;254:231-42. https://doi.org/10.1006/bbrc.1998.9921
  47. Chachisvilis M, Zhang YL, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 2006;103:15463-8. https://doi.org/10.1073/pnas.0607224103
  48. Eng E, Ballermann BJ. Diminished NF-kappaB activation and PD-GF-B expression in glomerular endothelial cells subjected to chronic shear stress. Microvasc Res 2003;65:137-44. https://doi.org/10.1016/S0026-2862(03)00004-9
  49. Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 2005;38:1949-71. https://doi.org/10.1016/j.jbiomech.2004.09.030
  50. Lipowsky HH. Microvascular rheology and hemodynamics. Microcirculation 2005;12:5-15. https://doi.org/10.1080/10739680590894966
  51. Amann K, Breitbach M, Ritz E, Mall G. Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol 1998;9:1018-22.
  52. Merrill EW, Cokelet GC, Britten A, Wells RE Jr. Non-Newtonian rheology of human blood: effect of fibrinogen deduced by "subtraction". Circ Res 1963;13:48-55. https://doi.org/10.1161/01.RES.13.1.48
  53. Copley AL, King RG. Rheogoniometric viscosity measurements of whole human blood at minimal shear rates down to 0.0009 sec-1. Ex-perientia 1970;26:904-5.
  54. Merrill EW, Gilliland ER, Cokelet G, Shin H, Britten A, Wells RE Jr. Rheology of human blood, near and at zero flow: effects of temperature and hematocrit level. Biophys J 1963;3:199-213. https://doi.org/10.1016/S0006-3495(63)86816-2
  55. Merrill EW, Cheng CS, Pelletier GA. Yield stress of normal human blood as a function of endogenous fibrinogen. J Appl Physiol 1969;26: 1-3.
  56. Yeow YL, Wickramasinghe SR, Leong YK, Han B. Model-independent relationships between hematocrit, blood viscosity, and yield stress derived from Couette viscometry data. Biotechnol Prog 2002;18: 1068-75. https://doi.org/10.1021/bp025558k
  57. Picart C, Piau JM, Galliard H, Carpentier PH. Threshold of shear st-ress in human blood for healthy and sick subjects. J Mal Vasc 1998; 23:113-8.
  58. Errill EW. Rheology of blood. Physiol Rev 1969;49:863-88.
  59. Zydney AL, Oliver JD III, Colton CK. A constitutive equation for the viscosity of stored red cell suspensions: effects of hematocrit, shear rate, and suspending phase. J Rheol 1991;35:1639-80. https://doi.org/10.1122/1.550249
  60. Picart C, Piau JM, Galliard H, Carpentier PH. Blood yield stress and its Hematocrit Dependence. J Rheol 1998;42:1-12. https://doi.org/10.1122/1.550883
  61. Chien S, Usami S, Taylor HM, Lundberg JL, Gregersen MI. Effects of hematocrit and plasma proteins on human blood rheology at low sh-ear rates. J Appl Physiol 1966;21:81-7.
  62. Morris CL, Smith CM 2nd, Blackshear PL Jr. A new method for measuring the yield stress in thin layers of sedimenting blood. Biophys J 1987;52:229-40. https://doi.org/10.1016/S0006-3495(87)83210-1
  63. Picart C, Carpentier PH, Galliard H, Piau JM. Blood yield stress in sys-temic sclerosis. Am J Physiol 1999;276:H771-7.
  64. Yu PK, Balaratnasingam C, Cringle SJ, McAllister IL, Provis J, Yu DY. Microstructure and network organization of the microvasculature in the human macula. Invest Ophthalmol Vis Sci 2010;51:6735-43. https://doi.org/10.1167/iovs.10-5415
  65. Jung F, Pindur G, Hiebl B, Franke RP. Influence of capillary geometry on hypoperfusion-induced ischemia: a numerical study. Appl Cardiopulm Pathophysiol 2010;14:229-35.
  66. Benedict KF, Coffin GS, Barrett EJ, Skalak TC. Hemodynamic systems analysis of capillary network remodeling during the progression of type 2 diabetes. Microcirculation 2011;18:63-73. https://doi.org/10.1111/j.1549-8719.2010.00069.x
  67. Shea SM, Raskova J. Glomerular hemodynamics and vascular structure in uremia: a network analysis of glomerular path lengths and maximal blood transit times computed for a microvascular model reconstructed from subserial ultrathin sections. Microvasc Res 1984; 28:37-50. https://doi.org/10.1016/0026-2862(84)90027-X
  68. McManus BM, Allard MF, Yanagawa R. Hemodynamic Disorders. In: Rubin R, Strayer DS, Rubin E, editors. Rubin's Pathology: Clinicopathologic Foundations of Medicine. 5th ed. Baltimore: Lippincott Wil-liams & Wilkins;2008. p.229-30.
  69. Payman R, Lyon MJ. Rat utricular macula: blood flow and stereolo-gical assessment of capillary morphology. Ann Otol Rhinol Laryngol 1993;102:893-9.
  70. Arend O, Wolf S, Jung F, et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifo-veal capillary network. Br J Ophthalmol 1991;75:514-8. https://doi.org/10.1136/bjo.75.9.514
  71. Lubbers DW. Microcirculation and O2 exchange through the skin surface: a theoretical analysis. Adv Exp Med Biol 1994;361:51-8.
  72. Lubbers DW, Baumgartl H. Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. Kidney Int 1997;51:372-80. https://doi.org/10.1038/ki.1997.49
  73. Chaturani P, Narasimman S. Theory for flow of Casson and Herschel-Bulkley fluids in cone-plate viscometers. Biorheology 1988;25:199-207.

Cited by

  1. Changes in Whole Blood Viscosity at Low Shear Rates Correlate with Intravascular Volume Changes during Hemodialysis vol.35, pp.6, 2011, https://doi.org/10.5301/ijao.5000107
  2. NoninvasiveIn-vivoMeasurements of Microvessels by Reflection-Type Micro Multipoint Laser Doppler Velocimeter vol.51, pp.3, 2011, https://doi.org/10.7567/jjap.51.032701
  3. Reply to Pancheva, Panchev, and Pancheva vol.115, pp.3, 2013, https://doi.org/10.1152/japplphysiol.00544.2013
  4. <i>De novo</i> cavernous aneurysms development after contralateral parent artery occlusion—Two cases report vol.3, pp.4, 2011, https://doi.org/10.4236/ojcd.2013.34032
  5. Analysis of the Magnetic Field Influence on the Rheological Properties of Healthy Persons Blood vol.2013, pp.None, 2011, https://doi.org/10.1155/2013/490410
  6. Reduction of low-density lipoprotein cholesterol, plasma viscosity, and whole blood viscosity by the application of pulsed corona discharges and filtration vol.84, pp.3, 2013, https://doi.org/10.1063/1.4797478
  7. The predictive value of retinal vascular findings for carotid artery atherosclerosis: are further recommendations with regard to carotid atherosclerosis screening needed? vol.28, pp.3, 2013, https://doi.org/10.1007/s00380-012-0258-1
  8. Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases vol.6, pp.5, 2014, https://doi.org/10.1039/c4ib00025k
  9. Cardiovascular benefits of phlebotomy: relationship to changes in hemorheological variables vol.29, pp.2, 2011, https://doi.org/10.1177/0267659113505637
  10. Grounding the Human Body during Yoga Exercise with a Grounded Yoga Mat Reduces Blood Viscosity vol.5, pp.4, 2011, https://doi.org/10.4236/ojpm.2015.54019
  11. Hemorheology in experimental research: is it necessary to consider blood fluidity differences in the laboratory rat? vol.49, pp.2, 2011, https://doi.org/10.1177/0023677214555783
  12. Fluid-Structure Interaction Model of a Percutaneous Aortic Valve: Comparison with an In Vitro Test and Feasibility Study in a Patient-Specific Case vol.44, pp.2, 2011, https://doi.org/10.1007/s10439-015-1429-x
  13. A review of hemorheology: Measuring techniques and recent advances vol.28, pp.1, 2011, https://doi.org/10.1007/s13367-016-0001-z
  14. Efficacy of umbilical cord-derived mesenchymal stem cell-based therapy for osteonecrosis of the femoral head: A three-year follow-up study vol.14, pp.5, 2011, https://doi.org/10.3892/mmr.2016.5745
  15. Hemorheological abnormalities and their associations with coronary blood flow in patients with cardiac syndrome X: a comparison between males and females vol.32, pp.1, 2017, https://doi.org/10.1177/0267659116661052
  16. Reduced amputation rate with isovolemic hemodilution in critical limb ischemia patients vol.67, pp.2, 2011, https://doi.org/10.3233/ch-120108
  17. Changes in whole blood viscosity during hemodialysis and mortality in patients with end-stage renal disease vol.65, pp.3, 2017, https://doi.org/10.3233/ch-16183
  18. Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations vol.17, pp.9, 2011, https://doi.org/10.3390/s17092037
  19. Periodic and simultaneous quantification of blood viscosity and red blood cell aggregation using a microfluidic platform underin-vitroclosed-loop circulation vol.12, pp.2, 2011, https://doi.org/10.1063/1.5017052
  20. The relationship between hypercholesterolemia as a risk factor for stroke and blood viscosity measured using Digital Microcapillary® vol.1073, pp.None, 2018, https://doi.org/10.1088/1742-6596/1073/4/042045
  21. Effects of Grounding (Earthing) on Massage Therapists: An Exploratory Study vol.10, pp.2, 2018, https://doi.org/10.4236/health.2018.102019
  22. Hemoglobin levels during the first trimester of pregnancy are associated with the risk of gestational diabetes mellitus, pre-eclampsia and preterm birth in Chinese women: a retrospective study vol.18, pp.None, 2011, https://doi.org/10.1186/s12884-018-1800-7
  23. Effect of diet on blood viscosity in healthy humans: a systematic review vol.10, pp.3, 2011, https://doi.org/10.19082/6563
  24. Inertia flows of Bingham fluids through a planar channel: Hydroelastic instability analysis vol.232, pp.13, 2011, https://doi.org/10.1177/0954406217711470
  25. Estimating the discretization dependent accuracy of perfusion in coupled capillary flow measurements vol.13, pp.7, 2018, https://doi.org/10.1371/journal.pone.0200521
  26. Microfluidic-Based Technique for Measuring RBC Aggregation and Blood Viscosity in a Continuous and Simultaneous Fashion vol.9, pp.9, 2011, https://doi.org/10.3390/mi9090467
  27. Therapeutic Effect and Mechanism Study of Rhodiola wallichiana var. cholaensis Injection to Acute Blood Stasis Using Metabolomics Based on UPLC-Q/TOF-MS vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/1514845
  28. Promotion of whole blood rheology after vitamin C supplementation: focus on red blood cells vol.97, pp.9, 2011, https://doi.org/10.1139/cjpp-2018-0735
  29. The Product of Red Blood Cells and Hematocrit Can Be Used as a Novel Indicator of Impaired Fasting Blood Glucose Status vol.13, pp.None, 2011, https://doi.org/10.2147/dmso.s270276
  30. Shear Thinning in the Prandtl Model and Its Relation to Generalized Newtonian Fluids vol.8, pp.4, 2011, https://doi.org/10.3390/lubricants8040038
  31. The Effect of Electroacupuncture on Plasma Fibrinogen Levels in Restraint Stress Wistar Rats vol.32, pp.2, 2011, https://doi.org/10.1089/acu.2019.1370
  32. A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix vol.20, pp.10, 2011, https://doi.org/10.1039/d0lc00059k
  33. Open sessile droplet viscometer with low sample consumption vol.20, pp.10, 2020, https://doi.org/10.1039/d0lc00248h
  34. Hematological Characteristics and Erythrokinetic Indiсes in Little Ground Squirrels During Arousal from Hibernation vol.30, pp.2, 2011, https://doi.org/10.15407/cryo30.02.132
  35. Blood viscosity and its determinants in the highest city in the world vol.598, pp.18, 2011, https://doi.org/10.1113/jp279694
  36. Erythrocyte deformability reduction in various pediatric hematologic diseases vol.75, pp.3, 2011, https://doi.org/10.3233/ch-200817
  37. A Review of Red Yeast Rice, a Traditional Fermented Food in Japan and East Asia: Its Characteristic Ingredients and Application in the Maintenance and Improvement of Health in Lipid Metabolism and the vol.26, pp.6, 2021, https://doi.org/10.3390/molecules26061619
  38. Association of blood viscosity with first-pass reperfusion in mechanical thrombectomy for acute ischemic stroke vol.77, pp.2, 2011, https://doi.org/10.3233/ch-200979
  39. Fractional calculus tracer kinetic compartment model for quantification of microvascular perfusion vol.42, pp.6, 2021, https://doi.org/10.1088/1361-6579/ac067c
  40. Quantitative Monitoring of Dynamic Blood Flows Using Coflowing Laminar Streams in a Sensorless Approach vol.11, pp.16, 2011, https://doi.org/10.3390/app11167260
  41. Effects of Thyroid Hormone on Tissue Hypoxia: Relevance to Sepsis Therapy vol.10, pp.24, 2021, https://doi.org/10.3390/jcm10245855