DOI QR코드

DOI QR Code

ALGEBRAS IN MCn(k) WITH dim(m2R)=1

  • Received : 2011.06.22
  • Accepted : 2011.08.13
  • Published : 2011.09.30

Abstract

We introduce a method to construct some algebras $R{\in}MC_n(k)$ with dim(R) = n and $dim(m_R^2)=1$ for each $n{\geq}3$.

Keywords

References

  1. W. C. Brown and F. W. Call, Maximal Commutative Subalgebras of n ${\times}$ n Matrices, Communications in Algebra 59 (1993), no. 12, 4439-4460.
  2. W. C. Brown, Two Constructions of Maximal Commutative Subalgebras of n${\times}$n Matrices, Communications in Algebra 22 (1994), no. 10, 4051-4066. https://doi.org/10.1080/00927879408825065
  3. W. C. Brown, Constructing Maximal Commutative Subalgebras of Matrix Rings in Small Dimensions, Communications in Algebra 25 (1997), no. 12, 3923-3946. https://doi.org/10.1080/00927879708826096
  4. R. C. Courter, The Dimension of Maximal Commutative Subalgebras of $K_{n}$, Duke Mathematical Journal 32 (1965), 225-232. https://doi.org/10.1215/S0012-7094-65-03219-9
  5. D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Academic Press, 1968.
  6. Youngkwon Song, On the Maximal Commutative Subalgebras of 14 by 14 Matrices, Communications in Algebra 25 (1997), no. 12, 3823-3840. https://doi.org/10.1080/00927879708826089
  7. Youngkwon Song, Maximal Commutative Subalgebras of Matrix Algebras, Communications in Algebra 27 (1999), no. 4, 1649-1663. https://doi.org/10.1080/00927879908826519
  8. Youngkwon Song, Notes on the Constructions of Maximal Commutative Subalgebra of $M_{n}$(k), Communications in Algebra 29 (2001), no. 10, 4333-4339. https://doi.org/10.1081/AGB-100106759
  9. Youngkwon Song, On $C^{t}_{2}$ -Construction, FJMS 33 (2009), no. 1, 33-40.