DOI QR코드

DOI QR Code

WEYL STRUCTURES ON COMPACT CONNECTED LIE GROUPS

  • Park, Joon-Sik (Department of Mathematics Pusan University of Foreign Studies) ;
  • Pyo, Yong-Soo (Department of Applied Mathematics Pukyong National University) ;
  • Shin, Young-Lim (Department of Applied Mathematics Pukyong National University)
  • Received : 2011.06.01
  • Accepted : 2011.08.13
  • Published : 2011.09.30

Abstract

Let G be a compact connected semisimple Lie group, B the Killing form of the algebra g of G, and g the invariant metric induced by B. Then, we obtain a necessary and sufficient condition for a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) to be projectively flat (resp. Einstein-Weyl). And, we also get that if a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) which has symmetric Ricci tensor $Ric^D$ is projectively flat, then the connection D is Einstein-Weyl; but the converse is not true. Moreover, we show that if a left invariant connection D with Weyl structure ($D,\;g,\;{\omega}$) on (G, g) is projectively flat (resp. Einstein-Weyl), then D is a Yang-Mills connection.

Keywords

Acknowledgement

Supported by : Pukyong National University

References

  1. B. Alexandrov, S. Ivanov, Weyl structure with positive Ricci tensor, Differential Geom. Appl. 18 (2003), no. 3, 343-350. https://doi.org/10.1016/S0926-2245(03)00010-X
  2. F. Dillen, K. Nomizu and L. Vranken, Conjugate connections and Radon's theorem in affine differential geometry, Monatsh Math. 109 (1990), no. 3, 221- 235. https://doi.org/10.1007/BF01297762
  3. S. Dragomir, T. Ichiyama and H. Urakawa, Yang-Mills theory and conjugate connections, Differential Geom. Appl. 18 (2003), no. 2, 229-238. https://doi.org/10.1016/S0926-2245(02)00149-3
  4. M. A. Guest, Geometry of maps between generalized flag manifolds, J. Differential Geom. 25 (1987), 223-247. https://doi.org/10.4310/jdg/1214440851
  5. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
  6. M. Itoh, Compact Einstein-Weyl manifolds and the associated constant, Osaka J. Math. 35 (1998), no. 3, 567-578.
  7. S. Kobayashi, Differential Geometry of Connections and Gauge Theory, Shokabo (in Japanese), Tokyo, 1990.
  8. A. B. Madsen, H. Pedersen, Y.S. Poon and A. Swann, Compact Einstein-Weyl manifolds with large symmetry group, Duke Math. J. 88 (1997), no. 3, 407-434. https://doi.org/10.1215/S0012-7094-97-08817-7
  9. K. Nomizu and T. Sasaki, Affine Differential Geometry-Geometry of Affine Immersions, Cambridge, 1994.
  10. J.-S. Park, Yang-Mills connections on the orthonormal frame bundles over Einstein normal homogeneous manifolds, Int. J. of Pure & Appli. Math. 5 (2003), 213-223.
  11. J.-S. Park, Critical homogeneous metrics on the Heisenberg manifold, Int. In- form. Sci. 11 (2005), 31-34.
  12. J.-S. Park, The conjugate connection of a Yang-Mills connection, Kyushu J. Math. 62 (2008), no. 1, 217-220. https://doi.org/10.2206/kyushujm.62.217
  13. J.-S. Park, Yang-Mills connections with Weyl structure, Proc. Japan Acad. 84 (2008), no. 7, 129-132. https://doi.org/10.3792/pjaa.84.129
  14. J.-S. Park, Projectively flat Yang-Mills connections, Kyushu J. Math. 64 (2010), no. 1, 49-58.
  15. J.-S. Park, Invariant Yang-Mills connections with Weyl structure, J. Geometry and Physics 60 (2010), 1950-1957. https://doi.org/10.1016/j.geomphys.2010.08.003
  16. H. Pedersen, Y.S. Poon and A. Swann, The Hitchin-Thorpe inequality for Einstein-Weyl manifolds, Bull. London Math. Soc. 26 (1994), 191-194. https://doi.org/10.1112/blms/26.2.191
  17. H. Pedersen, Y.S. Poon and A. Swann, Einstein-Weyl deformations and submanifolds, Internat. J. Math. 7 (1996), 705-719. https://doi.org/10.1142/S0129167X96000372
  18. H. Pedersen and A. Swann, Riemannian submersions, four-manifolds, and Einstein-Weyl geometry, Proc. London Math. Soc. 66 (1993), 381-399. https://doi.org/10.1112/plms/s3-66.2.381
  19. H. Pedersen and A. Swann, Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. reine angew. Math. 441 (1993), 99-113.
  20. H. Pedersen and K.P. Tod, Three dimensional Einstein geometry, Adv. Math. 97 (1993), 74-109. https://doi.org/10.1006/aima.1993.1002
  21. K. P. Tod, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc. 45 (1992), 341-351. https://doi.org/10.1112/jlms/s2-45.2.341
  22. H. Urakawa, Yang-Mills theory in Einstein-Weyl geometry and affne differen- tial geometry, Rev. Bull. Calcutta Math. Soc. 10 (2002), 7-18.