DOI QR코드

DOI QR Code

COMPARISON THEOREMS FOR THE VOLUMES OF TUBES ABOUT METRIC BALLS IN CAT(𝜿)-SPACES

  • Lee, Doohann (Department of Mathematics, Sungkyunkwan University) ;
  • Kim, Yong-Il (School of Liberal Arts, Korea University of Technology and Education)
  • Received : 2011.04.08
  • Accepted : 2011.08.13
  • Published : 2011.09.30

Abstract

In this paper, we establish some comparison theorems about volumes of tubes in metric spaces with nonpositive curvature. First we compare the Hausdorff measure of tube about a metric ball contained in an (n-1)-dimensional totally geodesic subspace of an n-dimensional locally compact, geodesically complete Hadamard space with Lebesgue measure of its corresponding tube in Euclidean space ${\mathbb{R}}^n$, and then develop the result to the case of an m-dimensional totally geodesic subspace for 1 < m < n with an additional condition. Also, we estimate the Hausdorff measure of the tube about a shortest curve in a metric space of curvature bounded above and below.

Keywords

References

  1. A. D. Alexandrov, Uber eine verallgemeinerung der Riemannschen geometrie, Schr. Forschungs Inst. Math. 1 (1957), 33-84.
  2. A. D. Alexandrov, V. N. Berestovskii, I. G. Nikolaev, Generalized Riemannian spaces, Russian Math. Surveys 41 (1986), 1-54.
  3. V. N. Berestovskij, I. G. Nikolaev, Non-regular Riemannian Geometry, Springer- Verlag, Berlin, 1993.
  4. D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, Amer. Math. Soc., Rhode Island, 2001.
  5. H. Busemann, Intrinsic area, Ann. of Math. 48 (1947), 234-267. https://doi.org/10.2307/1969168
  6. S. Buyalo, Lectures on space of curvature bounded from above, Spring semester 1994/95 a.y. University of Illinois at Urbana Champaign.
  7. Y. Chai, D. Lee, Tubes in singular spaces of nonpositive curvature, J. Korean Math. Soc. 43 (2006), 1129-1142. https://doi.org/10.4134/JKMS.2006.43.5.1129
  8. A. Gray, Tubes, Addison-Wesley, Redwood City, 1990.
  9. K. Grove, P. Petersen, Volume comparison a la Alexandrov, Acta Math. 169 (1992), 131-151. https://doi.org/10.1007/BF02392759
  10. O. Kowalski, L. Vanhecke, Ball-homogeneous and disk-homogeneous Riemannian manifolds, Math. Z. 180 (1982), 429-444. https://doi.org/10.1007/BF01214716
  11. O. Kowalski, L. Vanhecke, The volume of geodesic disks in a Riemannian mani-fold, Czechoslovak Math. J. 35 (1985), 66-77.
  12. K. Nagano, A volume convergence theorem for Alexandrov spaces with curvature bounded above, Math. Z. 241 (2002), 127-163. https://doi.org/10.1007/s002090100409