DOI QR코드

DOI QR Code

Modulation by the $GABA_{B}$ receptor siRNA of ethanol-mediated PKA-${\alpha}$, CaMKII, and p-CREB intracellular signaling in prenatal rat hippocampal neurons

  • Lee, Hae-Young (Department of Biology, College of Natural Sciences (RINS), Gyeongsang National University) ;
  • Yang, Byoung-Chul (National Institute of Animal Science) ;
  • Lee, Eun-Shil (Department of Biology, College of Natural Sciences (RINS), Gyeongsang National University) ;
  • Chung, Jong-Ii (Department of Agronomy, Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University) ;
  • Koh, Phil-Ok (Department of Anatomy, Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University) ;
  • Park, Moon-Seok (Department of Biology, College of Natural Sciences (RINS), Gyeongsang National University) ;
  • Kim, Myeong-Ok (Department of Biology, College of Natural Sciences (RINS), Gyeongsang National University)
  • Published : 2011.09.30

Abstract

Fetal alcohol syndrome (FAS) is a developmental neuropathology resulting from in utero exposure to ethanol; many of ethanol's effects are likely to be mediated by the neurotransmitter ${\gamma}$-aminobutyric acid (GABA). We studied modulation of the neurotransmitter receptor $GABA_{B}R$ and its capacity for intracellular signal transduction under conditions of ethanol treatment (ET) and RNA interference to investigate a potential role for GABA signaling in FAS. ET increased $GABA_{B1}R$ protein levels, but decreased protein kinase A-${\alpha}$ (PKA-${\alpha}$), calcium/calmodulin-dependent protein kinase II (CaMKII) and phosphorylation of cAMP-response element binding protein (p-CREB), in cultured hippocampal neurons harvested at gestation day 17.5. To elucidate $GABA_{B1}R$ response to ethanol, we observed the effects of a $GABA_{B}R$ agonist and antagonist in pharmacotherapy for ethanol abuse. Baclofen increased $GABA_{B}R$, CaMKII and p-CREB levels, whereas phaclofen decreased $GABA_{B}R$, CaMKII and p-CREB levels except PKA-${\alpha}$. Furthermore, when $GABA_{B1}R$ was knocked down by siRNA treatment, CaMKII and p-CREB levels were reduced upon ET. We speculate that stimulation of $GABA_{B1}R$ activity by ET can modulate CaMKII and p-CREB signaling to detrimental effect on fetal brain development.

Keywords

References

  1. Clarren SK, Smith DW. The fetal alcohol syndrome. N Engl J Med 1978;298:1063-7. https://doi.org/10.1056/NEJM197805112981906
  2. Berman RF, Hannigan JH. Effects of prenatal alcohol exposure on the hippocampus: spatial behavior, electrophysiology, and neuroanatomy. Hippocampus 2000;10:94-110. https://doi.org/10.1002/(SICI)1098-1063(2000)10:1<94::AID-HIPO11>3.0.CO;2-T
  3. Lindsley TA, Comstock LL, Rising LJ. Morphologic and neurotoxic effects of ethanol vary with timing of exposure in vitro. Alcohol 2002;28:197-203. https://doi.org/10.1016/S0741-8329(02)00279-3
  4. Byrnes ML, Richardson DP, Brien JF, Reynolds JN, Dringenberg HC. Spatial acquisition in the Morris water maze and hippocampal long-term potentiation in the adult guinea pig following brain growth spurt: prenatal ethanol exposure. Neurotoxicol Teratol 2004;26:543-51. https://doi.org/10.1016/j.ntt.2004.04.005
  5. Jones KL, Smith DW. Recognition of the fetal alcohol syndrome in early infancy. Lancet 1973;302:999-1001. https://doi.org/10.1016/S0140-6736(73)91092-1
  6. Streissguth AP, Aase JM, Clarren SK, Randels SP, LaDue RA, Smith DF. Fetal alcohol syndrome in adolescents and adults. JAMA 1991;265:1961-7. https://doi.org/10.1001/jama.1991.03460150065025
  7. Miller MW, Nowakowski RS. Effect of prenatal exposure to ethanol on the cell cycle kinetics and growth fraction in the proliferative zones of fetal rat cerebral cortex. Alcohol Clin Exp Res 1991;15:229-32. https://doi.org/10.1111/j.1530-0277.1991.tb01861.x
  8. Goodlett CR, Horn KH. Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res Health 2001;25:175-84.
  9. Ticku MK, Lowrimore P, Lehoullier P. Ethanol enhances GABA-induced 36Cl-influx in primary spinal cord cultured neurons. Brain Res Bull 1986;17:123-6. https://doi.org/10.1016/0361-9230(86)90168-1
  10. Toso L, Roberson R, Woodard J, Abebe D, Spong CY. Prenatal alcohol exposure alters GABA(A)alpha5 expression: a mechanism of alcohol-induced learning dysfunction. Am J Obstet Gynecol 2006;195:522-7. https://doi.org/10.1016/j.ajog.2006.01.098
  11. Allan AM, Harris RA. A new alcohol antagonist: phaclofen. Life Sci 1989;45:1771-9. https://doi.org/10.1016/0024-3205(89)90516-X
  12. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 2002;54:247-64. https://doi.org/10.1124/pr.54.2.247
  13. Duthey B, Caudron S, Perroy J, Bettler B, Fagni L, Pin JP, Prezeau L. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J Biol Chem 2002;277:3236-41. https://doi.org/10.1074/jbc.M108900200
  14. Besheer J, Lepoutre V, Hodge CW. GABA(B) receptor agonists reduce operant ethanol self-administration and enhance ethanol sedation in C57BL/6J mice. Psychopharmacology (Berl) 2004;174:358-66.
  15. Enna SJ, Bowery NG. GABA(B) receptor alterations as indicators of physiological and pharmacological function. Biochem Pharmacol 2004;68:1541-8. https://doi.org/10.1016/j.bcp.2004.06.037
  16. Escher T, Mittleman G. Effects of ethanol and GABAB drugs on working memory in C57BL/6J and DBA/2J mice. Psychopharmacology (Berl) 2004;176:166-74.
  17. Stromberg MF. The effect of baclofen alone and in combination with naltrexone on ethanol consumption in the rat. Pharmacol Biochem Behav 2004;78:743-50. https://doi.org/10.1016/j.pbb.2004.05.006
  18. Li SP, Park MS, Jin GZ, Kim JH, Lee HL, Lee YL, Kim JH, Bahk JY, Park TJ, Koh PO, Chung BC, Kim MO. Ethanol modulates GABA(B) receptor expression in cortex and hippocampus of the adult rat brain. Brain Res 2005;1061:27-35. https://doi.org/10.1016/j.brainres.2005.08.052
  19. Dzitoyeva S, Dimitrijevic N, Manev H. Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence. Proc Natl Acad Sci U S A 2003;100:5485-90. https://doi.org/10.1073/pnas.0830111100
  20. Pandey SC, Zhang H, Roy A, Xu T. Deficits in amygdaloid cAMP-responsive element-binding protein signaling play a role in genetic predisposition to anxiety and alcoholism. J Clin Invest 2005;115:2762-73. https://doi.org/10.1172/JCI24381
  21. Li SP, Kim JH, Park MS, Bahk JY, Chung BC, Kim MO. Ethanol modulates the expression of GABA(B) receptor mRNAs in the prenatal rat brain in an age and area dependent manner. Neuroscience 2005;134:857-66. https://doi.org/10.1016/j.neuroscience.2005.05.001
  22. Bison S, Crews F. Alcohol withdrawal increases neuropeptide Y immunoreactivity in rat brain. Alcohol Clin Exp Res 2003;27:1173-83. https://doi.org/10.1097/01.ALC.0000075827.74538.FE
  23. Peris J, Eppler B, Hu M, Walker DW, Hunter BE, Mason K, Anderson KJ. Effects of chronic ethanol exposure on GABA receptors and GABAB receptor modulation of 3H-GABA release in the hippocampus. Alcohol Clin Exp Res 1997;21:1047-52.
  24. Wang Z, Hu SY, Lei DL, Song WX. Effect of chronic stress on PKA and P-CREB expression in hippocampus of rats and the antagonism of antidepressors. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2006;31:767-71.
  25. Asyyed A, Storm D, Diamond I. Ethanol activates cAMP response element-mediated gene expression in select regions of the mouse brain. Brain Res 2006;1106:63-71. https://doi.org/10.1016/j.brainres.2006.05.107
  26. Pandey SC, Chartoff EH, Carlezon WA Jr, Zou J, Zhang H, Kreibich AS, Blendy JA, Crews FT. CREB gene transcription factors: role in molecular mechanisms of alcohol and drug addiction. Alcohol Clin Exp Res 2005;29:176-84. https://doi.org/10.1097/01.ALC.0000153550.31168.1D
  27. Dave KR, Lange-Asschenfeldt C, Raval AP, Prado R, Busto R, Saul I, Perez-Pinzon MA. Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release and biosynthesis. J Neurosci Res 2005;82:665-73. https://doi.org/10.1002/jnr.20674
  28. Franek M. History and the present of metabotropic GABAB receptor. Cesk Fysiol 2004;53:117-24.
  29. Kamatchi GL, Ticku MK. Functional coupling of presynaptic GABAB receptors with voltage-gated Ca2+ channel: regulation by protein kinases A and C in cultured spinal cord neurons. Mol Pharmacol 1990;38:342-7.
  30. Knight AR, Bowery NG. The pharmacology of adenylyl cyclase modulation by GABAB receptors in rat brain slices. Neuropharmacology 1996;35:703-12. https://doi.org/10.1016/0028-3908(96)84642-9
  31. Kubota H, Katsurabayashi S, Moorhouse AJ, Murakami N, Koga H, Akaike N. GABAB receptor transduction mechanisms, and cross-talk between protein kinases A and C, in GABAergic terminals synapsing onto neurons of the rat nucleus basalis of Meynert. J Physiol 2003;551(Pt 1):263-76. https://doi.org/10.1113/jphysiol.2003.046524
  32. Mukherjee RS, McBride EW, Beinborn M, Dunlap K, Kopin AS. Point mutations in either subunit of the GABAB receptor confer constitutive activity to the heterodimer. Mol Pharmacol 2006;70:1406-13. https://doi.org/10.1124/mol.106.024463

Cited by

  1. αCaMKII Autophosphorylation Controls the Establishment of Alcohol Drinking Behavior vol.38, pp.9, 2011, https://doi.org/10.1038/npp.2013.60
  2. Cannabinoids, Chemical Senses, and Regulation of Feeding Behavior vol.44, pp.2, 2011, https://doi.org/10.1093/chemse/bjy068