DOI QR코드

DOI QR Code

Resveratrol activates AMPK and suppresses LPS-induced NF-kB-dependent COX-2 activation in RAW 264.7 macrophage cells

  • Yi, Chin-Ok (Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Jeon, Byeong-Tak (Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Shin, Hyun-Joo (Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Jeong, Eun-Ae (Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Chang, Ki-Churl (Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Lee, Jung-Eun (Department of Thoracic and Cardiovascular Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Lee, Dong-Hoon (Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Kim, Hyun-Joon (Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Kang, Sang-Soo (Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Cho, Gyeong-Jae (Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Choi, Wan-Sung (Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Roh, Gu-Seob (Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine)
  • Published : 2011.09.30

Abstract

AMP-activated protein kinase (AMPK), an enzyme involved in energy homeostasis, regulates inflammatory responses, but its precise mechanisms are not fully understood. Recent evidence has shown that resveratrol (RES), an AMPK activator, reduces prostaglandin $E_{2}$ production in lipopolysaccharide (LPS)-treated microglia. Here, we examined the effect of RES on nuclear factor kappa B (NF-${\kappa}$B) dependent cyclooxygenase (COX)-2 activation in LPS-treated RWA 264.7 macrophages. We found that treatment with RES increased AMPK activation. AMPK and acetyl CoA carboxylase phosphorylation were attenuated in cells treated with LPS+RES, compared to cells treated with LPS alone. RES inhibited tumor necrosis factor (TNF)-${\alpha}$ and TNF receptor 1 in LPS-treated cells. Finally, RES inhibited LPS-induced NF-${\kappa}$B translocation into the nucleus and COX-2 expression. Moreover, the effects of 5-aminoimidazole-4-carboxamide ribose and compound C were consistent with the effects of RES in LPS-treated cells. Taken together, these results suggest that the anti-inflammatory action of RES in RAW 264.7 macrophages is dependent on AMPK activation and is associated with inhibition of the LPS-stimulated NF-${\kappa}$B-dependent COX-2 signaling pathway.

Keywords

References

  1. Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006;116:1776-83. https://doi.org/10.1172/JCI29044
  2. Corton JM, Gillespie JG, Hardie DG. Role of the AMPactivated protein kinase in the cellular stress response. Curr Biol 1994;4:315-24. https://doi.org/10.1016/S0960-9822(00)00070-1
  3. Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 1999;24:22-5. https://doi.org/10.1016/S0968-0004(98)01340-1
  4. Hardie DG, Pan DA. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 2002;30(Pt 6):1064-70. https://doi.org/10.1042/bst0301064
  5. Giri S, Nath N, Smith B, Viollet B, Singh AK, Singh I. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMPactivated protein kinase. J Neurosci 2004;24:479-87. https://doi.org/10.1523/JNEUROSCI.4288-03.2004
  6. Hsu HY, Wen MH. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. Biol Chem 2002;277:22131-9. https://doi.org/10.1074/jbc.M111883200
  7. Raabe T, Bukrinsky M, Currie RA. Relative contribution of transcription and translation to the induction of tumor necrosis factor-alpha by lipopolysaccharide. J Biol Chem 1998;273:974-80. https://doi.org/10.1074/jbc.273.2.974
  8. Raabe T, Bukrinsky M, Currie RA. Relative contribution of transcription and translation to the induction of tumor necrosis factor-alpha by lipopolysaccharide. J Biol Chem 1998;273:974-80. https://doi.org/10.1074/jbc.273.2.974
  9. Grell M, Wajant H, Zimmermann G, Scheurich P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci U S A 1998;95:570-5. https://doi.org/10.1073/pnas.95.2.570
  10. Shishodia S, Potdar P, Gairola CG, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 2003;24:1269-79. https://doi.org/10.1093/carcin/bgg078
  11. Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2001;2:149-56. https://doi.org/10.1016/S1470-2045(00)00256-4
  12. Ermert L, Ermert M, Goppelt-Struebe M, Walmrath D, Grimminger F, Steudel W, Ghofrani HA, Homberger C, Duncker H, Seeger W. Cyclooxygenase isoenzyme localization and mRNA expression in rat lungs. Am J Respir Cell Mol Biol 1998;18:479-88. https://doi.org/10.1165/ajrcmb.18.4.2939
  13. Fremont L. Biological effects of resveratrol. Life Sci 2000;66:663-73. https://doi.org/10.1016/S0024-3205(99)00410-5
  14. Miller NJ, Rice-Evans CA. Antioxidant activity of resveratrol in red wine. Clin Chem 1995;41(12 Pt 1):1789.
  15. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a highcalorie diet. Nature 2006;444:337-42. https://doi.org/10.1038/nature05354
  16. Kumar A, Sharma SS. NF-kappaB inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun 2010;394:360-5. https://doi.org/10.1016/j.bbrc.2010.03.014
  17. Fullerton MD, Steinberg GR. SIRT1 takes a backseat to AMPK in the regulation of insulin sensitivity by resveratrol. Diabetes 2010;59:551-3. https://doi.org/10.2337/db09-1732
  18. Muller JM, Ziegler-Heitbrock HW, Baeuerle PA. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 1993;187:233-56. https://doi.org/10.1016/S0171-2985(11)80342-6
  19. Arichi H, Kimura Y, Okuda H, Baba K, Kozawa M, Arichi S. Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. et Zucc. on lipid metabolism Chem Pharm Bull (Tokyo) 1982;30:1766-70. https://doi.org/10.1248/cpb.30.1766
  20. Sato M, Ray PS, Maulik G, Maulik N, Engelman RM, Bertelli AA, Bertelli A, Das DK. Myocardial protection with red wine extract. J Cardiovasc Pharmacol 2000;35:263-8. https://doi.org/10.1097/00005344-200002000-00013
  21. Tsai SH, Lin-Shiau SY, Lin JK. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol 1999;126:673-80. https://doi.org/10.1038/sj.bjp.0702357
  22. Hardie DG. Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim Biophys Acta 1992;1123:231-8. https://doi.org/10.1016/0005-2760(92)90001-C
  23. Pahan K, Sheikh FG, Namboodiri AM, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest 1997;100:2671-9. https://doi.org/10.1172/JCI119812
  24. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007;10:1387-94. https://doi.org/10.1038/nn1997
  25. Tamas P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, Cantrell DA. Regulation of the energy sensor AMPactivated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 2006;203:1665-70. https://doi.org/10.1084/jem.20052469
  26. Blazquez C, Geelen MJ, Velasco G, Guzmán M. The AMPactivated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett 2001;489:149-53. https://doi.org/10.1016/S0014-5793(01)02089-0
  27. McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV. Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 2005;280:20493-502. https://doi.org/10.1074/jbc.M409985200
  28. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I, Hirota H. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol 2005;25:9554-75. https://doi.org/10.1128/MCB.25.21.9554-9575.2005
  29. Tracey KJ, Cerami A. Tumor necrosis factor: an updated review of its biology. Crit Care Med 1993;21(10 Suppl):S415-22.
  30. Al-Lamki RS, Wang J, Skepper JN, Thiru S, Pober JS, Bradley JR. Expression of tumor necrosis factor receptors in normal kidney and rejecting renal transplants. Lab Invest 2001;81:1503-15. https://doi.org/10.1038/labinvest.3780364
  31. Bradley JR. TNF-mediated inflammatory disease. J Pathol 2008;214:149-60. https://doi.org/10.1002/path.2287
  32. Jhun BS, Jin Q, Oh YT, Kim SS, Kong Y, Cho YH, Ha J, Baik HH, Kang I. 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. Biochem Biophys Res Commun 2004;318:372-80. https://doi.org/10.1016/j.bbrc.2004.04.035
  33. Labuzek K, Liber S, Gabryel B, Bułdak L, Okopien B. Ambivalent effects of compound C (dorsomorphin) on inflammatory response in LPS-stimulated rat primary microglial cultures. Naunyn Schmiedebergs Arch Pharmacol 2010;381:41-57. https://doi.org/10.1007/s00210-009-0472-2
  34. Lu DY, Tang CH, Chen YH, Wei IH. Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia. J Cell Biochem 2010;110:697-705. https://doi.org/10.1002/jcb.22580
  35. Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 2009;182:8005-14. https://doi.org/10.4049/jimmunol.0803563
  36. Jeong HW, Hsu KC, Lee JW, Ham M, Huh JY, Shin HJ, Kim WS, Kim JB. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab 2009;296:E955-64. https://doi.org/10.1152/ajpendo.90599.2008
  37. Wang Y, Huang Y, Lam KS, Li Y, Wong WT, Ye H, Lau CW, Vanhoutte PM, Xu A. Berberine prevents hyperglycemiainduced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res 2009;82:484-92. https://doi.org/10.1093/cvr/cvp078
  38. Zhou J, Zhou S, Tang J, Zhang K, Guang L, Huang Y, Xu Y, Ying Y, Zhang L, Li D. Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats. Eur J Pharmacol 2009;606:262-8. https://doi.org/10.1016/j.ejphar.2008.12.056

Cited by

  1. Quercetin-3-O-glucuronide affects the gene expression profile of M1 and M2a human macrophages exhibiting anti-inflammatory effects vol.3, pp.11, 2011, https://doi.org/10.1039/c2fo30127j
  2. TG accumulation inhibitory effects of Jinqi formula by AMPK signaling pathway vol.143, pp.1, 2012, https://doi.org/10.1016/j.jep.2012.05.052
  3. mTOR: more targets of resveratrol? vol.15, pp.None, 2013, https://doi.org/10.1017/erm.2013.11
  4. TSG (2,3,4’ ,5-tetrahydroxystilbene 2-O-β-D-glucoside) suppresses induction of pro-inflammatory factors by attenuating the binding activity of nuclear factor-κB in microglia vol.10, pp.None, 2013, https://doi.org/10.1186/1742-2094-10-129
  5. Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy vol.3, pp.None, 2011, https://doi.org/10.3389/fonc.2013.00175
  6. AMPK couples plasma renin to cellular metabolism by phosphorylation of ACC1 vol.305, pp.5, 2011, https://doi.org/10.1152/ajprenal.00407.2012
  7. Mecanismos moleculares de ação anti-inflamatória e antioxidante de polifenóis de uvas e vinho tinto na aterosclerose vol.15, pp.4, 2011, https://doi.org/10.1590/s1516-05722013000400020
  8. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade : Phytoblockers of metastasis cascade vol.33, pp.1, 2014, https://doi.org/10.1007/s10555-013-9457-1
  9. AMPK Activation Inhibits Expression of Proinflammatory Mediators Through Downregulation of PI3K/p38 MAPK and NF-κB Signaling in Murine Macrophages vol.34, pp.2, 2011, https://doi.org/10.1089/dna.2014.2630
  10. SIRT1 Is a Regulator in High Glucose-Induced Inflammatory Response in RAW264.7 Cells vol.10, pp.3, 2011, https://doi.org/10.1371/journal.pone.0120849
  11. Globular CTRP9 inhibits oxLDL-induced inflammatory response in RAW 264.7 macrophages via AMPK activation vol.417, pp.1, 2016, https://doi.org/10.1007/s11010-016-2714-1
  12. Role of Natural Stilbenes in the Prevention of Cancer vol.2016, pp.None, 2011, https://doi.org/10.1155/2016/3128951
  13. YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine vol.8, pp.10, 2011, https://doi.org/10.3390/nu8100546
  14. AMPK Mediates Glucocorticoids Stress-Induced Downregulation of the Glucocorticoid Receptor in Cultured Rat Prefrontal Cortical Astrocytes vol.11, pp.8, 2011, https://doi.org/10.1371/journal.pone.0159513
  15. Development and characterization of resveratrol nanoemulsions carrying dual-imaging agents vol.7, pp.12, 2011, https://doi.org/10.4155/tde-2016-0050
  16. AMPK activation by peri-sciatic nerve administration of ozone attenuates CCI-induced neuropathic pain in rats vol.9, pp.2, 2017, https://doi.org/10.1093/jmcb/mjw043
  17. The role and mechanism of NF-κB in viral encephalitis of children vol.13, pp.6, 2017, https://doi.org/10.3892/etm.2017.4396
  18. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis vol.2018, pp.None, 2011, https://doi.org/10.1155/2018/5164314
  19. Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling vol.37, pp.1, 2011, https://doi.org/10.1186/s13046-018-0878-0
  20. 2,3,5,4′-tetrahydroxy-stilbene-2-O-β-D-glucoside attenuates methionine and choline-deficient diet-induced non-alcoholic fatty liver disease vol.16, pp.2, 2011, https://doi.org/10.3892/etm.2018.6300
  21. Chikusetsusaponin V Inhibits LPS-Activated Inflammatory Responses via SIRT1/NF-κB Signaling Pathway in RAW264.7 Cells vol.41, pp.6, 2011, https://doi.org/10.1007/s10753-018-0858-8
  22. Resveratrol Attenuates LPS-induced Apoptosis via Inhibiting NF- κ B Activity in Chicken Peripheral Lymphocyte Cultures vol.20, pp.4, 2011, https://doi.org/10.1590/1806-9061-2017-0720
  23. Guggulsterone Activates Adipocyte Beiging through Direct Effects on 3T3-L1 Adipocytes and Indirect Effects Mediated through RAW264.7 Macrophages vol.6, pp.1, 2011, https://doi.org/10.3390/medicines6010022
  24. Rbfox2 dissociation from stress granules suppresses cancer progression vol.51, pp.4, 2011, https://doi.org/10.1038/s12276-019-0246-y
  25. Metformin exerts antidepressant effects by regulated DNA hydroxymethylation vol.11, pp.6, 2019, https://doi.org/10.2217/epi-2018-0187
  26. Turmeronol A and turmeronol B from Curcuma longa prevent inflammatory mediator production by lipopolysaccharide-stimulated RAW264.7 macrophages, partially via reduced NF-κB signaling vol.10, pp.9, 2019, https://doi.org/10.1039/c9fo00336c
  27. Resveratrol suppresses bone cancer pain in rats by attenuating inflammatory responses through the AMPK/Drp1 signaling vol.52, pp.3, 2011, https://doi.org/10.1093/abbs/gmz162
  28. The bitterness of genitourinary infections: Properties, ligands of genitourinary bitter taste receptors and mechanisms linking taste sensing to inflammatory processes in the genitourinary tract vol.247, pp.None, 2011, https://doi.org/10.1016/j.ejogrb.2020.02.015
  29. Effects of Dietary Energy Level on Performance, Plasma Parameters, and Central AMPK Levels in Stressed Broilers vol.8, pp.None, 2021, https://doi.org/10.3389/fvets.2021.681858
  30. Anti-Inflammatory Action and Mechanisms of Resveratrol vol.26, pp.1, 2011, https://doi.org/10.3390/molecules26010229
  31. Anti-Inflammatory Effect of Curcumin on the Mouse Model of Myocardial Infarction through Regulating Macrophage Polarization vol.2021, pp.None, 2011, https://doi.org/10.1155/2021/9976912
  32. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy vol.67, pp.None, 2011, https://doi.org/10.1016/j.arr.2021.101271
  33. Tubular lysosomes harbor active ion gradients and poise macrophages for phagocytosis vol.118, pp.41, 2011, https://doi.org/10.1073/pnas.2113174118
  34. Resveratrol Inhibits NLRP3 Inflammasome-Induced Pyroptosis and miR-155 Expression in Microglia Through Sirt1/AMPK Pathway vol.39, pp.6, 2011, https://doi.org/10.1007/s12640-021-00435-w