DOI QR코드

DOI QR Code

The Effect of Crystallization by Heat Treatment on Electromagnetic Interference Shielding Efficiency of Carbon Fibers

열처리 온도에 의한 구조 결정성이 탄소섬유의 전자파 차폐 성능에 미치는 영향

  • Kim, Jong Gu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Chung, Choul Ho (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 김종구 (충남대학교 공과대학 정밀응용화학과) ;
  • 정철호 (충남대학교 공과대학 정밀응용화학과) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Received : 2010.10.05
  • Accepted : 2010.11.05
  • Published : 2011.04.10

Abstract

To investigate the electromagnetic interference shielding efficiency (EMI SE) property based on heat treatment effects of carbon fibers in various temperatures, the polyacrilonitrle-based carbon fibers were prepared by electrospinning method and treated at 1073, 1323, 1873 and 2573 K. The surface morphology of carbon fibers was investigated by using FE-SEM and the carbon crystallization was studied by Raman spectroscopy based on effects of reaction temperatures. The electrical conductivity was obtained by measuring the surface resistance with four probe method on carbon crystallization. The permittivity, permeability and EMI SE were investigated by using S-parameter in the range of 800~4500 MHz. In case of carbon fibers treated at 2573 K, the improved carbon crystallization was confirmed by Raman spectrum and the enhanced electrical conductivity showing 54.7 S/cm was also observed. The permittivity was dramatically improved by factor of 4 based on effect of high reaction temperature. Eventually, the highly improved EMI SE value was obtained showing around 41.7 dB.

열처리 온도에 따른 탄소섬유의 전자파 차폐특성을 알아보고자 전기방사법을 이용하여 나노섬유를 제조하고 1073, 1323, 1873, 2573 K의 온도 조건에서 열처리 공정을 실시하여 서로 다른 탄소 결정화도를 갖는 PAN계 탄소섬유를 제조하였다. 장방출 주사전자현미경을 통하여 제조된 섬유의 표면 형상을 조사하였고 열처리 온도에 따른 탄소섬유의 결정화도를 Raman 분석을 통하여 확인하였다. 또한 결정화도에 따른 전기전도성을 알아보고자 4-탐침법을 이용하여 표면저항을 측정하고 전기전도성을 계산하였으며, 회로망 분석기를 이용하여 800~4500 MHz의 주파수 영역에서 S-parameter를 측정하고 유전율 및 투자율, 그리고 전자파 차폐 특성을 조사하였다. 2573 K에서 제조된 탄소섬유의 경우 Raman 분석을 통하여 Ig/Id 값이 2.66으로 1323 K에서 제조된 탄소섬유의 1.08에 비해 2.4배 증가하여 결정화도가 향상됨을 확인하였고 전기전도성 또한 54.7 S/cm로 약 6배의 향상을 확인하였다. 유전율 실수부에서는 평균 20의 수치를 보여 1323 K에서 제조된 탄소섬유와 비교하여 약 4배의 향상을 보였다. 결과적으로 열처리 온도에 따른 탄소의 결정화도 향상에 의해 전자파 차폐 성능이 평균 41.7 dB로 약 10 dB이 향상되었음을 확인하였다.

Keywords

References

  1. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, Mater. Chem. Phys., 113, 919 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.065
  2. C. S. Chen, W. R. Chen, S. C. Chen, and R. D. Chien, Int. Commun. Heat. Mass., 35, 744 (2008). https://doi.org/10.1016/j.icheatmasstransfer.2008.02.006
  3. C. Y. Huang, W. W. Mo, and M. L. Roan, Surf. Coat. Tech., 184, 123 (2004). https://doi.org/10.1016/j.surfcoat.2003.11.009
  4. M. S. Kim, H. K. Kim, S. W. Byun, S. H. Jeong, Y. K. Hong, and J. S. Joo, Synthetic Met., 126, 233 (2002). https://doi.org/10.1016/S0379-6779(01)00562-8
  5. J. Wu, I. Hong, S. M. Park, S. Y. Lee, and M. S. Kim, Carbon Lett., 9, 137 (2008). https://doi.org/10.5714/CL.2008.9.2.137
  6. D. D. L. Chung, Carbon, 39, 279 (2001).
  7. L. Yu, K. Kim, D. Park, M. S. Kim, K. I. Kim, and Y. S. Lim, Carbon Lett., 9, 210 (2008). https://doi.org/10.5714/CL.2008.9.3.210
  8. Q. Liu, D. Zhang, T. Fan, J. Gu, Y. Miyamoto, and Z. Chen, Carbon, 46, 461 (2008). https://doi.org/10.1016/j.carbon.2007.12.010
  9. Y. Huang, N. Li, Y. Ma, F. Du, F. Li, and X. He, Carbon, 45, 1614 (2007). https://doi.org/10.1016/j.carbon.2007.04.016
  10. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Li, and T. Guo, Carbon, 45, 821 (2007). https://doi.org/10.1016/j.carbon.2006.11.020
  11. S. Bhadra, N. K. Singha, and D. Khastgir, Curr. Appl. Phys., 9, 396 (2009). https://doi.org/10.1016/j.cap.2008.03.009
  12. J. B. Donnet and R. C. Bansal, Carbon Fibers 2nd ed., Marcel Dekker, New York, (1990).
  13. Y. Yang, X. Liu, B. Xu, and T. Li, Carbon, 44, 1661 (2006). https://doi.org/10.1016/j.carbon.2006.01.030
  14. G. Savage, Carbon-Carbon Composite, Chapman & Hall, London (1993).
  15. E. Fitzer, Carbon Fibers and Their Composites, Springer, Berlin (1985).
  16. J. S. Im, S. J. Park, and Y. S. Lee, J. Colloid Interface, 314, 32 (2007). https://doi.org/10.1016/j.jcis.2007.05.033
  17. Y. Guo, L. Xiaohong, C. Xiaojun, C. Wenguo, Z. Shaobing, and W. Jie, Acta Mater., 56, 5775 (2008). https://doi.org/10.1016/j.actamat.2008.07.056
  18. J. S. Im, S. J. Park, T. J. Kim, Y. H. Kim, and Y. S. Lee, J. Colloid Interface Sci., 318, 42 (2008). https://doi.org/10.1016/j.jcis.2007.10.024
  19. J. S. Im, S. J. Park, and Y. S. Lee, Int. J. Hydrogen Energy, 34, 1423 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.054
  20. J. Y. Park, I. H. Lee, and G. N. Bea, J. Ind. Eng. Chem., 14, 707 (2006).
  21. S. J. Kim, S. M. Yun, and Y. S. Lee, J. Ind. Eng. Chem., 16, 273 (2010). https://doi.org/10.1016/j.jiec.2009.08.004
  22. J. S. Im, J. S. Jang, and Y. S. Lee, J. Ind. Eng. Chem., 15, 914 (2009). https://doi.org/10.1016/j.jiec.2009.09.024
  23. A. M. Nicolson and G. F. Ross, IEEE Trans Instrum. Meas., 19, 377 (1970).
  24. D. K. Ghodgaonkar, V. V. Vardan, and V. K. Varadan, IEEE Trans Instrum. Meas., 39, 387 (1990). https://doi.org/10.1109/19.52520
  25. Y. K. Hong, C. Y. Lee, C. K. Jeong, D. E. Lee, K. Kim, and J. Joo, Rev. Sci. Instrum., 74, 1098 (2003). https://doi.org/10.1063/1.1532540
  26. G. Andreas and H. W. Joachim, Angew. Chem. Int. Ed., 46, 703 (2007).
  27. J. J. Kipling and P. V. Shooter, Proc. 2nd Conf. Ind. Carbon Graphite, Soc. Chem. Ind., London, 15 (1965).
  28. A. Oberlin, Carbon, 17, 7 (1979). https://doi.org/10.1016/0008-6223(79)90065-4
  29. F. R. Barnet and M. K. Norr, Carbon, 11, 281 (1973). https://doi.org/10.1016/0008-6223(73)90068-7
  30. M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, Polym. Degrad. Stabil., 92, 1421 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.023
  31. S. Arman, E. F. Reza, and S. Ali, J. Mater. Process. Tech., 198, 60 (2008). https://doi.org/10.1016/j.jmatprotec.2007.06.052
  32. S. Dalton, F. Heatley, and M. B. Peter, Polymer, 40, 5531 (1999). https://doi.org/10.1016/S0032-3861(98)00778-2
  33. D. D. Edie, Carbon, 36, 345 (1998). https://doi.org/10.1016/S0008-6223(97)00185-1
  34. K. Tse-Hao, J. Appl. Polym. Sci., 59, 577 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4<577::AID-APP2>3.0.CO;2-Q
  35. ASTM F1529-97, Standard test method for sheet resistance uniformity evaluation by in-line four-point probe with the dualconfiguration procedure (1997).
  36. J. S. Im, S. J. Kim, P. H. Kang, and Y. S. Lee, J. Ind. Eng. Chem., 15, 699 (2009). https://doi.org/10.1016/j.jiec.2009.09.048
  37. Z. Wu, J. Li, D. Timmer, K. Lozano, and S. Bose, Int. J. Adhes., 29, 488 (2009). https://doi.org/10.1016/j.ijadhadh.2008.10.003
  38. S. K. Dhawan, K. Singh, A. K. Bakhshi, and A. Ohlan, Synthetic Met., 159, 2259 (2009). https://doi.org/10.1016/j.synthmet.2009.08.031
  39. J. S. Im, J. G. Kim, S. H. Lee, and Y. S. Lee, Colloid Surf. APhysicochem. Eng. Asp., 364, 151 (2010). https://doi.org/10.1016/j.colsurfa.2010.05.015
  40. J. S. Im, J. G. Kim, and Y. S. Lee, Carbon, 47, 2640 (2009). https://doi.org/10.1016/j.carbon.2009.05.017
  41. J. S. Im, J. G. Kim, and S. H. Lee, Mater. Chem. Phys., In press.