DOI QR코드

DOI QR Code

The Study of Persimmon Vinegar as a Functional Drink on Reduce Blood Lipids and Enhance Exercise Performance

감식초를 활용한 기능성 음료로서의 혈중 지질 농도 감소와 운동기능성 증대 가능성 검토

  • Seo, Hyobin (Department of Leisure Sports, Kyungpook National University) ;
  • Song, Youngju (Division of Sports Science, Sunmoon University) ;
  • Kang, Jun-Yong (Division of Sports Science, Sunmoon University) ;
  • Kwon, Dae-Keun (Division of Sports Science, Sunmoon University) ;
  • Kim, Pan-Gi (School of Ecological & Environmental Systems, Kyungpook National University) ;
  • Ryu, Sungpil (Department of Leisure Sports, Kyungpook National University)
  • 서효빈 (경북대학교 레저스포츠학과) ;
  • 송영주 (선문대학교 스포츠과학부) ;
  • 강준용 (선문대학교 스포츠과학부) ;
  • 권대근 (선문대학교 스포츠과학부) ;
  • 김판기 (경북대학교 생태환경시스템학부) ;
  • 류승필 (경북대학교 레저스포츠학과)
  • Received : 2011.02.23
  • Accepted : 2011.04.20
  • Published : 2011.06.30

Abstract

This study was performed to find out the persimmon vinegar as a functional drink on reducing blood lipids and enhancing exercise performance. For these, thirty two Sprague-Dawley male rats were divided into 4 groups; control (CONT), water placebo with high fat diet control (ACON), high fat diet with 2.5 times diluted persimmon vinegar ingestion (PV2.5), and high fat diet with 5.0 times diluted persimmon vinegar ingestion (PV5.0). Body weight was not different. Abdominal fat pads were statistically reduced in PV2.5 and PV5.0 compared to CONT and ACON. Blood glucose was not significant but TC, LDL-C and TG were lower in PV2.5 and PV5.0 than other groups, and HDL-C in PV2.5 was the highest among groups. Glycogen contents in the muscle and liver were higher in PV2.5 and PV5.0 compared to CONT and ACON. These results suggested that persimmon vinegar ingestion may inhibit the blood lipids increase and increase glycogen storage which possibly enhancing exercise performance. Therefore, persimmon vinegar has the possibility as the functional drink.

감식초의 섭취가 지질대사와 글리코겐저장 능력향상 및 기능성음료로서의 가능성을 검토하였다. 본 연구는 6주령 SD계 수컷 흰쥐 32마리를 대상으로 CONT(고지방식이 대조군), ACON(고지방식이+증류수 투여), PV2.5(고지방식이+감식초 2.5배 희석), PV5.0(고지방식이+감식초 5배 희석)으로 구분하였다. 각 집단간 체중에는 유의한 차이가 나타나지 않았으나 복강내지방, 고환지방에서는 PV2.5군과 PV5.0군에서 유의하게 낮게 나타났다. 혈액성분변화에서 글루코스는 유의한 차이가 없었으며, TC, LDL-C, TG에서 PV2.5군과 PV5.0군이 유의하게 낮았고, HDL-C은 PV2.5군에서 통계적으로 유의하게 높게 나타났다. 근육과 간의 글리코겐 함량에서는 PV2.5군과 PV5.0군에서 유의하게 높은 저장량을 나타내었다. 이상의 결과 감식초의 섭취는 혈중 지질 억제와 함께 운동시 필요한 글리코겐의 저장능력을 향상시켜 운동수행능력이 증가할 수 있음을 시사하고 있어 다양한 접근이 가능한 기능성 음료서의 가능성을 제시하고 있다.

Keywords

References

  1. 김기진, 배영상, 이순천, 이원재, 이인규, 윤여경, 류전수, 박형국, 하원호. 1997. 감식초 음료 섭취가 비만자의 신체 활동시 지방대사 활성에 미치는 영향. 한국유산소운동과학회지 1(1): 48-59.
  2. 김귀란, 윤성란, 이지연, 정용진, 윤경영, 권중호. 2010. 시판 과실식초의 이화학적 품질 및 향기성분 비교. 한국식품저장유통학회 17(5): 616-625.
  3. 김미경, 김미정, 김소연, 정대성, 정용진, 김순동. 1994. 복발효 감식초의 품질. 동아시아식생활학회지 4(2): 45-50.
  4. 김형진, 최상원, 조성희. 2010. 오디의 가공형태에 따른 Streptozotocin 유발 당뇨쥐의 혈당 및 지질의 상태에 미치는 영향. 한국영양학회지 43(6): 551-560.
  5. 류승필, 권태동. 2009. 현미 식초섭취가 중강도 운동 중 에너지대사에 미치는 영향. 한국운동영양학회지 13(3): 217-224.
  6. 이부용, 육진수. 1999. 진공농축에 따른 감식초의 이화 학적 특성변화. 한국식품과학회지 31(4): 1132-1136.
  7. 장세영, 백창호, 정규호, 박난영, 정용진. 2005. 칼슘 용해도에 미치는 식초의 영향. 한국식품저장유통학회 12(2): 112-118.
  8. 정용진, 서지형, 이기동, 박난영, 최태호. 1999. 2단계 발효에 의한 사과식초와 시판 사과식초의 품질비교. 한국식품영양과학회지 28(2): 353-358.
  9. Bergouignan, A., Schoeller, D.A., Votruba, S., Simon, C. and Blanc, S. 2008. The acetate recovery factor to correct tracer-derived dietary fat oxidation in humans. American Journal of Physiology 294: 645-653.
  10. Calvert, L.D., Shelley, R., Singh, S.J., Greenhaff, P.L., Bankart, J., Morgan, M.D. and Steiner, M.C. 2008. Dichloroacetate enhances performance and reduces blood lactate during maximal cycle exercise in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 177(10): 1090-1094. https://doi.org/10.1164/rccm.200707-1032OC
  11. Friedewald, W.T., Levy, R.L. and Fredrickson, D.S. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry 18: 499-502.
  12. Fushimi, T. and Sato, Y. 2005. Effect of acetic feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats. British Journal of Nutrition 94: 714-719. https://doi.org/10.1079/BJN20051545
  13. Fushimi, T., Suruga, K., Oshima, Y., Fukiharu, M., Tsukamoto, Y. and Goda, T. 2006. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol- rich diet. British Journal of Nutrition 95: 916-924. https://doi.org/10.1079/BJN20061740
  14. Fushimi, T., Tayama, K., Fukaya, M., Kitakoshi, K., Nakai, N., Tsukamoto, Y. and Sato, Y. 2001. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. Journal of Nutrition 131(7): 1973-1977.
  15. Harris, R.C., Marlin, D.J., Snow, D.H. and Harkness, R.A. 1991. Muscle ATP loss and lactate accumulation at different work intensities in the exercising Thoroughbred horse. European Journal of Applied Physiology and Occupational Physiology 62(4): 235-244. https://doi.org/10.1007/BF00571546
  16. Hattori, M., Kondo, T., Kishi, M. and Yamagami, K. 2010. A single oral administration of acetic acid increased energy expenditure in C57BL/6J mice. Bioscience, Biotechnology, and Biochemistry 74(10): 2158-2159. https://doi.org/10.1271/bbb.100486
  17. Johnston, C.S., Kim, C.M. and Buller, A.J. 2004. Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care 27: 281-282. https://doi.org/10.2337/diacare.27.1.281
  18. Kondo, T., Kishi, M., Fushimi, T., Ugajin, S. and Kaga, T. 2009. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Bioscience, Biotechnology, and Biochemistry 73(8): 1837-1843. https://doi.org/10.1271/bbb.90231
  19. Lim, K., Yoshioka, M., Kikuzato, S., Kiyonaga, A., Tanaka, H., Shindo, M. and Suzuki, M. 1997. Dietary red pepper ingestion increases carbohydrate oxidation at rest and during exercise in runners. Medicine and Science in Sports and Exercise 29(3):355-361. https://doi.org/10.1097/00005768-199703000-00010
  20. Mitrou, P., Raptis, A.E., Lambadiari, V., Boutati, E., Petsiou, E., Spanoudi, F., Papakonstantinou, E., Maratou, E., Economopoulos, T., Dimitriadis, G. and Raptis, S.A. 2010. Vinegar decreases postprandial hyperglycemia in patients with type 1 diabetes. Diabetes Care 33(2): e27. https://doi.org/10.2337/dc09-1354
  21. Moon, Y.J. and Cha, Y.S. 2008. Effects of persimmon-vinegar on lipid metabolism and alcohol clearance in chronic alcohol-fed rats. Journal of Medicinal Food 11: 38-45. https://doi.org/10.1089/jmf.2007.071
  22. Passonneau, J.V. and Lauderdale, V.R. 1974. A comparison of three methods of glycogen measurement in tissue. Analytical Biochemistry 60: 405-412. https://doi.org/10.1016/0003-2697(74)90248-6
  23. Prats, C., Helge, J.W., Nordby, P., Qvortrup, K., Ploug, T., Dela, F. and Wojtaszewski, J.F. 2009. Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization. The Journal of Biological Chemistry 284(23): 15692-15700. https://doi.org/10.1074/jbc.M900845200
  24. Ryu, S., Choi, S.K. Joung, S.S, Suh, H., Cha, Y.S. and Lim, K. 2001. Caffeine as a lipolytic food component increases enduraqnce performance in rats and athletes. Journal of Nutritional Science and Vitaminology 47(2): 139-146. https://doi.org/10.3177/jnsv.47.139
  25. Shabadashi, A.L. 1945. Glycogen loading of the interneuron synapsis and its functional sequls; the morphology of glycogen distribution and transmutation. Biulleten' Eksperimental'noi Biologii i Meditsiny 19(1): 30-33.
  26. Sakakibara, S., Murakami. R., Takahashi, M., Fushimi, T., Murohara, T., Kishi, M., Kajimoto, Y., Kitakaze, M. and Kaga, T. 2010. Vinegar intake enhances flow-mediated vasodilatation via upregulation of endothelial nitric oxide synthase activity. Bioscience, Biotechnology and Biochemistry 74(5): 1055-1061. https://doi.org/10.1271/bbb.90953
  27. Setorki, M., Asgary, S., Eidi, A., Rohani, A.H. and Khazaei, M. 2010. Acute effects of vinegar intake on some biochemical risk factors of atherosclerosis in hypercholesterolemic rabbits. Lipids in Health and Disease 28: 1-8.
  28. Smith G.I., Jeukendrup, A.E. and Ball, D. 2007. Sodium acetate induces a metabolic alkalosis but not the increase in fatty acid oxidation observed following bicarbonate ingestion in humans. Journal of Nutrition 137: 1750-1756.
  29. Song, Y.J. and Ryu, S.P. 2010. Studies of the of vinegar ingestion after the strenuous wingate test on energy substrates during recovere periods. Journal of Life Science 20(9): 1345-1352. https://doi.org/10.5352/JLS.2010.20.9.1345
  30. Sugiyama, S., Fushimi, T., Kishi, M., Irie, S., Tsuji, S., Hosokawa, N. and Kaga, T. 2010. Bioavailability of acetate from two vinegar supplements: capsule and drink. Journal of Nutritional Science and Vitaminology 56(4): 266-269. https://doi.org/10.3177/jnsv.56.266
  31. Sugiyama, S., Yoshino, T., Kanahara, H., Shichiri, M., Fukushi, D. and Ohtani, T. 2004. Effects of acetic acid treatment on plant chromosome structures analyzed by atomic force microscopy. Analytical Biochemistry 324(1): 39-44. https://doi.org/10.1016/j.ab.2003.09.026
  32. Takahra, A., Sugiyama, A., Honsho, S., Sakaguchi, Y., Akie, Y., Nakamure, Y. and Hashimoto, K. 2005. The endothelium-dependent vasodilator action of a new beverage made of red wine vinegar and grape juice. Biological & Pharmaceutical Bulletin 28(4): 754-756. https://doi.org/10.1248/bpb.28.754
  33. Tao, L., Wang, W., Li, L., Kramer, P.M. and Pereira, M.A. 2004. Effect of dibromoacetic acid on DNA methylation, glycogen accumulation, and peroxisome proliferation in mouse and rat liver. Toxicological Sciences: An Official Journal of the Society of Toxicology 82(1): 62-69. https://doi.org/10.1093/toxsci/kfh266
  34. Tong, L.T., Katakure, Y., Kawamura, S., Baba, S., Tanaka, Y., Udono, M., Kondo, Y., Nakamure, K., Imaizumi, K. and Sato, M. 2010. Effect of Kurozu concentrated liquid on adipocyte size in rats. Lipids in Health And Disease 23: 129-134.
  35. Waller, A.P., Geor, R.J., Spriet, L.L., Heigenhauser, G.J. and Lindinger, M.I. 2009. Oral acetate supplementation after prolonged moderate intensity exercise enhances early muscle glycogen resynthesis in horses. Experimental Physiology 94(8): 888-898. https://doi.org/10.1113/expphysiol.2009.047068
  36. Yamashita, H., Fujisawa, K., Ito, E., Idei, S., Kawaguchi, N., Kimoto, M., Hiemori, M. and Tsuji, H. 2007. Improvement of obesity and glucose tolerance by acetate in type 2 diabetic Otsuka Long-Evans Tokushima Fatty(OLETF) rats. Bioscience, Biotechnology, and Biochemistry 71(5): 1236-1243. https://doi.org/10.1271/bbb.60668
  37. Yamashita, H., Maruta, H., Jozuka, M., Kimura, R., Iwabuchi, H., Yamato, M., Saito, T., Fujisawa, K., Takahashi, Y., Kimoto, M., Hiemori, M. and Tsuji, H. 2009. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Bioscience, Biotechnology, and Biochemistry 73(3): 570-576. https://doi.org/10.1271/bbb.80634
  38. Yue, T.L., Nerurkar, S.S., Bao, W., Jucker, B.M., Sarov- Blat, L., Steplewski, K., Ohlstein, E.H. and Willette, R.N. 2008. In vivo activation of peroxisome proliferator-activated receptor-delta protects the heart from ischemia/reperfusion injury in Zucker fatty rats. The Journal of Pharmacology and Experimental Therapeutics 325(2): 466-74. https://doi.org/10.1124/jpet.107.135327