References
- Ernst S, Ouyang F, Linder C, et al. Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic catheter ablation. Circulation 2004;109:1472-5. https://doi.org/10.1161/01.CIR.0000125126.83579.1B
- Chun JK, Ernst S, Matthews S, et al. Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory. Eur Heart J 2007;28:190-5.
- Arya A, Kottkamp H, Piorkowski C, et al. Initial clinical experience with a remote magnetic catheter navigation system for ablation of cavotricuspid isthmus-dependent right atrial flutter. Pacing Clin Electrophysiol 2008;31:597-603. https://doi.org/10.1111/j.1540-8159.2008.01047.x
- Thornton AS, Jordaens LJ. Remote magnetic navigation for mapping and ablating right ventricular outflow tract tachycardia. Heart Rhythm 2006;3:691-6. https://doi.org/10.1016/j.hrthm.2006.01.028
- Pappone C, Vicedomini G, Manguso F, et al. Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 2006;47:1390-400. https://doi.org/10.1016/j.jacc.2005.11.058
- Kim AM, Turakhia M, Lu J, et al. Impact of remote magnetic cathteter navigation on ablation fluoroscopy and procedure time. Pacing Clin Electrophysiol 2008;31:1399-404. https://doi.org/10.1111/j.1540-8159.2008.01202.x
- Di Biase L, Fahmy TS, Patel D, et al. Remote magnetic navigation: human experience in pulmonary vein ablation. J Am Coll Cardiol 2007;50:868-74. https://doi.org/10.1016/j.jacc.2007.05.023
- Dagres N, Hindricks G, Kottkamp H, et al. Complications of atrial fibrillation ablation in a high-volume center in 1,000 procedures: still cause for concern? J Cardiovasc Electrophysiol 2009;20:1014-9. https://doi.org/10.1111/j.1540-8167.2009.01493.x
Cited by
- Remote magnetic with open-irrigated catheter vs. manual navigation for ablation of atrial fibrillation: a systematic review and meta-analysis vol.15, pp.9, 2011, https://doi.org/10.1093/europace/eut058
- Impact of catheter ablation with remote magnetic navigation on procedural outcomes in patients with persistent and long-standing persistent atrial fibrillation vol.44, pp.2, 2011, https://doi.org/10.1007/s10840-015-0037-x
- Efficacy and safety of remote magnetic catheter navigation vs. manual steerable sheath-guided ablation for catheter ablation of atrial fibrillation: a case-control study. vol.17, pp.2, 2011, https://doi.org/10.1093/europace/euu224
- Robotic navigation for catheter ablation: benefits and challenges vol.12, pp.4, 2011, https://doi.org/10.1586/17434440.2015.1052406
- Remote Magnetic versus Manual Navigation for Radiofrequency Ablation of Paroxysmal Atrial Fibrillation: Long-Term, Controlled Data in a Large Cohort vol.2017, pp.None, 2011, https://doi.org/10.1155/2017/6323729
- 2018 Korean Guidelines for Catheter Ablation of Atrial Fibrillation: Part II vol.19, pp.3, 2011, https://doi.org/10.18501/arrhythmia.2018.012
- Comparisons of efficacy, safety, and recurrence risk factors of paroxysmal and persistent atrial fibrillation catheter ablation using robotic magnetic navigation system vol.42, pp.4, 2011, https://doi.org/10.1002/clc.23156
- Remote Magnetic Versus Manual Catheter Navigation for Atrial Fibrillation Ablation : A Meta-Analysis vol.12, pp.10, 2011, https://doi.org/10.1161/circep.119.007517
- A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions vol.13, pp.1, 2011, https://doi.org/10.1007/s11370-020-00311-0
- Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders vol.6, pp.57, 2011, https://doi.org/10.1126/scirobotics.abf0601