DOI QR코드

DOI QR Code

Carbon Capture and CO2/CH4 Separation Technique Using Porous Carbon Materials

다공성 탄소재료를 이용한 CO2 포집 및 CO2/CH4 분리 기술

  • Cho, Se Ho (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Bai, Byong Chol (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Yu, Hye-Ryeon (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 조세호 (충남대학교 공과대학 정밀응용화학과) ;
  • 배병철 (충남대학교 공과대학 정밀응용화학과) ;
  • 유혜련 (충남대학교 공과대학 정밀응용화학과) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Received : 2011.07.09
  • Published : 2011.08.10

Abstract

Due to the strong dependence on fossil fuels within the history of human progress, it leads to disaster of the whole world like flood, shortage of water and extinction of the species. In order to curb carbon dioxide emissions, many technologies are being developed. Among them, porous carbon materials have important advantages over other absorbent, such as high surface area, thermal and chemical resistance, low cost, various pore distribution and low energy requirement for their regeneration. Carbon capture and storage (CCS) has attracted the significant research efforts for reducing green house gas emission using several absorbent and process. Moreover, the absorbent are used for the separation of bio mass gas that contains methane which is considered a promising fuel as new green energy resource. In this review, we summarized the recent studies and trend about the porous carbon materials for CCS as well as separation from the biogas.

온실가스로 인한 지구 온난화는 엘니뇨, 라니냐와 같은 심각한 기상이변을 초래하고 있으며, 매년 그 피해가 심각하게 증가하고 있는 실정이다. 따라서 온실가스의 80% 이상을 차지하고 있는 $CO_2$ 배출량을 감축하는 것이 매우 시급한 현안으로 부상되고 있다. 다공성 탄소는 고비표면적, 다양한 세공구조, 열 및 화학적 안정성, 재사용성과 같은 높은 유용성으로 인하여 carbon capture and storage (CCS) 기술에서 다른 여러 재료와 함께 중요한 위치를 차지하고 있는 재료이다. 본고에서는 주로 많이 연구되고 있는 CCS 기술 및 연구 동향에 대하여 살펴보았으며, 그 중 경제성과 실용성 흡착제로 각광을 받고 있는 다공성 탄소를 중심으로 배가스 중 $CO_2$ 흡착과 에너지 활용이 가능한 바이오 가스 분리에 대한 특성을 고찰하였다.

Keywords

References

  1. $CO_{2}$ emission from fuel combustion, IEA (2010).
  2. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Climate change 2001 : The scientific basis, UK : Cambridge University Press, Cambridge (2001).
  3. Report of German Renewable Energy Research Institute (2009).
  4. J. Klemes, I. Bulatov, and Y. Cockerill, Comput. Chem. Eng., 31, 445 (2004).
  5. K. J. Oh, W. J. Choi, J. J. Lee, S. W. Cho, and B. H. Shon, J. Korean Soc. Environ. Engrs., 23, 1337 (2001).
  6. J. H. Wee, J. I. Kim, and K. S. Cho, J. of KSEE, 30, 961 (2008).
  7. O. Yamamoto, T. Takkuma, and M. Kinouchi, IEEE Electr. Insul. M., 18, 32 (2002). https://doi.org/10.1109/MEI.2002.1014965
  8. M. T. Ho, G. Allinson, and D. E. Wiley, Desalination, 192, 288 (2006). https://doi.org/10.1016/j.desal.2005.04.135
  9. A. Arenillas, K. M. Smith, T. C. Drage, and C. E. Snape, Fuel, 84, 2204 (2005). https://doi.org/10.1016/j.fuel.2005.04.003
  10. K. H. Kang, S. K. Kam, S. W. Lee, and M. G. Lee, J. Environ. Sci., 16, 1279 (2007). https://doi.org/10.5322/JES.2007.16.11.1279
  11. C. G. von Frederdorff and M. A. Elliott, Chemistry of Coal Utilization, Supplementary volume (H. H. Lowery, Ed.), 896, John Wiley & Sons, New York (1963).
  12. T. Burchell and R. R. Judkins, Energ, Convers. Manage., 37, 947 (1996). https://doi.org/10.1016/0196-8904(95)00282-0
  13. X. Dong, Z. Jun, L. Gang, P. Xiao, P. Webley, and Z. Yu-chun, J. Fuel Chem. Technol., 39, 169 (2011). https://doi.org/10.1016/S1872-5813(11)60016-9
  14. C. Shen, C. A. Grande, P. Li, J. Yu, and A. E. Rodrigues, Chem. Eng. J., 160, 398 (2010). https://doi.org/10.1016/j.cej.2009.12.005
  15. J. Przepiorski, M. Skrodzewicz, and A. W. Morawski, App. Surf. Sci., 225, 235 (2004). https://doi.org/10.1016/j.apsusc.2003.10.006
  16. M. G. Plaza, C. Pevida, C. F. Martin, J. Fermoso, J. J. Pis, and F. Rubiera, Sep. Purif. Technol., 71, 102 (2010). https://doi.org/10.1016/j.seppur.2009.11.008
  17. M. G. Plaza, S. Garcia, F. Rubiera, J. J. Pis, and C. Pevida, Sep. Purif. Technol., 80, 96 (2011). https://doi.org/10.1016/j.seppur.2011.04.015
  18. C. Pevida, M. G. Plaza, B. Arias, J. Fermoso, F. Rubiera, and J. J. Pis, Appl. Surf. Sci., 254, 7165 (2008). https://doi.org/10.1016/j.apsusc.2008.05.239
  19. H. An, B. Feng, and S. Su, Int. J. Greenh. Gas Con., 5, 16 (2011). https://doi.org/10.1016/j.ijggc.2010.03.007
  20. T. Garcia, R. Murillo, D. Cazorla-Amoros, A. M. Mastral, and N. S. Li, Carbon, 42, 1683 (2004). https://doi.org/10.1016/j.carbon.2004.02.029
  21. S. W. Lee, M. G. Lee, and S. B. Park, J. Environ. Sci., 17, 65 (2008).
  22. Z. Zhang, M. Xu, H. Wang, and Z. Li, Chem. Eng. J., 160, 571 (2010). https://doi.org/10.1016/j.cej.2010.03.070
  23. P. L. Walker Jr., Chemistry and Physics of Carbon, Marcel Dekker, 2, 257, New York (1966).
  24. K. Miura, Catal. Soc. Jpn., 41, 25 (1999).
  25. S. K. Verma and P. L. Walker Jr., Carbon, 28, 175 (1990). https://doi.org/10.1016/0008-6223(90)90111-B
  26. S. Villar‐Rodil, R. Navarrete, R. Denoyel, A. Albiniak, J. I. Parades, A. Martinez‐Alonso, and J. M. D. Tascon, Micropor. Mesopor. Mater., 77, 109 (2005). https://doi.org/10.1016/j.micromeso.2004.08.017
  27. S. H. Moom and J. W. Shin, J. of KSEE, 27, 614 (2005).