아밀로라이드 유발 신세뇨관산증 흰쥐 신장에서 암모니아 운반체의 발현

Renal Expression of Ammonia Transporters in Rats with Amiloride-Induced Renal Tubular Acidosis

  • 김승중 (충북대학교 의과대학 내과학교실, 의학연구소) ;
  • 김혜영 (충북대학교 의과대학 내과학교실, 의학연구소) ;
  • 최재현 (충북대학교 의과대학 내과학교실, 의학연구소) ;
  • 김정태 (충북대학교 의과대학 내과학교실, 의학연구소) ;
  • 김정은 (충북대학교 의과대학 내과학교실, 의학연구소) ;
  • 연명호 (충북대학교 의과대학 내과학교실, 의학연구소) ;
  • 김선문 (충북대학교 의과대학 내과학교실, 의학연구소) ;
  • 권순길 (충북대학교 의과대학 내과학교실, 의학연구소) ;
  • 신경섭 (충북대학교 의과대학 진단검사의학교실)
  • Kim, Seung-Jung (Department of Internal Medicine, Medical Research Institute, Chungbuk National University College of Medicine) ;
  • Kim, Hye-Young (Department of Internal Medicine, Medical Research Institute, Chungbuk National University College of Medicine) ;
  • Choi, Jae-Hyun (Department of Internal Medicine, Medical Research Institute, Chungbuk National University College of Medicine) ;
  • Kim, Jung-Tae (Department of Internal Medicine, Medical Research Institute, Chungbuk National University College of Medicine) ;
  • Kim, Jeong-Eun (Department of Internal Medicine, Medical Research Institute, Chungbuk National University College of Medicine) ;
  • Yeon, Myeong-Ho (Department of Internal Medicine, Medical Research Institute, Chungbuk National University College of Medicine) ;
  • Kim, Sun-Moon (Department of Internal Medicine, Medical Research Institute, Chungbuk National University College of Medicine) ;
  • Kwon, Soon-Kil (Department of Internal Medicine, Medical Research Institute, Chungbuk National University College of Medicine) ;
  • Shin, Kyung-Sub (Department of Laboratory Medicine, Chungbuk National University College of Medicine)
  • 발행 : 2011.06.01

초록

목적: 신세뇨관산증은 요중 산 배설이 감소하는 질환으로, 대부분 요 암모니아 배설의 감소에 의한 것이다. 본 연구는 아밀로라이드로 유발된 신세뇨관산증 흰쥐에서 산 배설의 변화와 암모니아 운반체인 Rh B Glycoprotein (Rhbg)와 Rh C Glycoprotein (Rhcg)의 발현 변화를 확인하여 신세뇨관산증의 병인에 암모니아 운반체의 역할을 규명하고자 하였다. 방법: Sprague-Dawley계 웅성 흰쥐를 사용하였으며, 실험군에는 amiloride (3 mg/kg/day)를 6일간 복강 내 주입하였다. 7일째 대사케이지에 mineral oil을 처리하여 24시간 동안 요를 수집하였다. Rhbg와 Rhcg의 단백 발현을 평가하기 위하여 immunoblot와 면역조직화학염색을 시행하였고, 면역조직 화학염색법을 정량화 분석하였다. 결과: 아밀로라이드 투여군에서 혈중 $tCO_2$ 농도는 대조군 25.6 ${\pm}$ 1.5 mEq/L에 비하여 23.0 ${\pm}$ 1.5 mEq/L로 감소하였으며 (p < 0.05), 혈중 $K^+$농도는 대조군 3.84 ${\pm}$ 0.34 mmol/L에 비하여 4.50 ${\pm}$ 0.46 mmol/L로 약간 높았다(p < 0.05). 아밀로라이드 투여군에서 24시간 요 암모니아 배설은 대조군 0.52 ${\pm}$ 0.07 mmol에 비하여 0.30 ${\pm}$ 0.03 mmol으로 요 암모니아 배설이 감소하였으며(p < 0.05), Urine pH는 양 군 간에 차이가 없어 아밀라이드 투여에 의해 신세뇨관산증이 유발되었음을 확인하였다. 반정량적 immunoblot 검사에서 Rhbg와 Rhcg의 단백 발현은 양 군 간에 유의한 차이가 없었다. 면역조직화학염색과 정량화 분석 결과 아밀로라이드 유발 신세뇨관산증군에서 Rhcg의 면역반응성은 감소하였으나, Rhbg의 면역반응성은 유의한 차이가 없었다. 결론: 아밀로라이드 투여 흰쥐에서 암모니아 배설 감소와 Rhcg의 면역반응성의 감소가 동반되었다. 따라서 아밀로라이드 유발 신세뇨관 산증의 병인에 암모니아 운반체 Rhcg가 중요한 역할을 할 것으로 생각한다.

Background/Aims: Renal tubular acidosis (RTA) decreases the net acid excretion, predominantly due to a decrease in urinary ammonia excretion. This study examined whether this decrement is associated with changes in the renal expression of the ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), in rats with amiloride-induced RTA. Methods: Male Sprague-Dawley rats were treated intraperitoneally with amiloride (3 mg/kg/day) for 6 days. Rhbg and Rhcg expression was evaluated by immunoblotting and immunohistochemistry. Cell height, total cellular expression, expression in the apical 25% of the cell, and apical expression as a percentage of total expression were quantified using immunohistochemistry with quantitative morphometric analysis. Results: After amiloride treatment for 6 days, the serum bicarbonate level was decreased, and serum potassium was increased. The total urinary ammonia excretion and potassium excretion were decreased. The total Rhbg and Rhcg protein expression levels were not changed in the cortex or outer medulla of the kidney. Light microscopy and immunohistochemistry with quantitative morphometric analysis demonstrated that total Rhcg expression was decreased in the cortical collecting duct (CCD) and outer medullary collecting duct (OMCD) in amiloride-induced RTA, whereas Rhbg immunoreactivity was unchanged. Conclusions: Rats with amiloride-induced RTA have decreased urinary ammonia excretion associated with decreased Rhcg expression in the CCD and OMCD, suggesting that the ammonia transporter Rhcg plays an important role in the pathogenesis of amiloride-induced RTA.

키워드

참고문헌

  1. Bastani B, Gluck SL. New insights into the pathogenesis of distal renal tubular acidosis. Miner Electrolyte Metab 1996;22:396-409.
  2. Gregory MJ, Schwartz GJ. Diagnosis and treatment of renal tubular disorders. Semin Nephrol 1998;18:317-329.
  3. DuBose TD Jr, Good DW, Hamm LL, Wall SM. Ammonium transport in the kidney: new physiological concepts and their clinical implications. J Am Soc Nephrol 1991;1:1193-1203.
  4. Knepper MA. $NH_4^+$ transport in the kidney. Kidney Int Suppl 1991;33:S95-S102.
  5. Marini AM, Vissers S, Urrestarazu A, André B. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J 1994;13:3464-3471.
  6. Ninnemann O, Jauniaux JC, Frommer WB. Identification of a high affinity $NH_4^+$ transporter from plants. EMBO J 1994;13: 3464-3471.
  7. Weiner ID, Verlander JW. Renal and hepatic expression of the ammonium transporter proteins, Rh B Glycoprotein and Rh C Glycoprotein. Acta Physiol Scand 2003;179:331-338. https://doi.org/10.1046/j.0001-6772.2003.01210.x
  8. Liu Z, Peng J, Mo R, Hui C, Huang CH. Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem 2001;276:1424-1433. https://doi.org/10.1074/jbc.M007528200
  9. Eladari D, Cheval L, Quentin F, et al. Expression of RhCG, a new putative NH(3)/$NH_4^+$ transporter, along the rat nephron. J Am Soc Nephrol 2002;13:1999-2008. https://doi.org/10.1097/01.ASN.0000025280.02386.9D
  10. Verlander JW, Miller RT, Frank AE, Royaux IE, Kim YH, Weiner ID. Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney. Am J Physiol Renal Physiol 2003; 284:F323-F337. https://doi.org/10.1152/ajprenal.00050.2002
  11. Han KH, Croker BP, Clapp WL, et al. Expression of the ammonia transporter, rh C glycoprotein, in normal and neoplastic human kidney. J Am Soc Nephrol 2006;17:2670-2679. https://doi.org/10.1681/ASN.2006020160
  12. Seshadri RM, Klein JD, Kozlowski S, et al. Renal expression of the ammonia transporters, Rhbg and Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 2006;290: F397-F408. https://doi.org/10.1152/ajprenal.00162.2005
  13. Kim HY, Baylis C, Verlander JW, et al. Effect of reduced renal mass on renal ammonia transporter family, Rh C glycoprotein and Rh B glycoprotein, expression. Am J Physiol Renal Physiol 2007;293:F1238-F1247. https://doi.org/10.1152/ajprenal.00151.2007
  14. Kurtzman NA. Disorders of distal acidification. Kidney Int 1990;38:720-727. https://doi.org/10.1038/ki.1990.264
  15. Mujais SK. Transport enzymes and renal tubular acidosis. Semin Nephrol 1998;18:74-82.
  16. Knepper MA, Packer R, Good DW. Ammonium transport in the kidney. Physiol Rev 1989;69:179-249. https://doi.org/10.1152/physrev.1989.69.1.179
  17. Lang W, Block TM, Zander R. Solubility of NH3 and apparent pK of $NH_4^+$ in human plasma, isotonic salt solutions and water at 37 degrees C. Clin Chim Acta 1998;273:43-58. https://doi.org/10.1016/S0009-8981(98)00019-9
  18. Weiner ID. The Rh gene family and renal ammonium transport. Curr Opin Nephrol Hypertens 2004;13:533-540. https://doi.org/10.1097/00041552-200409000-00009
  19. Kim HY, Verlander JW, Bishop JM, et al. Basolateral expression of the ammonia transporter family member, Rh C glycoprotein, in the mouse kidney. Am J Physiol Renal Physiol 2009;296:F543-F555. https://doi.org/10.1152/ajprenal.90637.2008
  20. Lim SW, Ahn KO, Kim WY, et al. Expression of ammonia transporters, Rhbg and Rhcg, in chronic cyclosporine nephropathy in rats. Nephron Exp Nephrol 2008;110:e49-e58. https://doi.org/10.1159/000153245
  21. Hamm LL, Simon EE. Roles and mechanisms of urinary buffer excretion. Am J Physiol 1987;253:F595-F605.
  22. Sabatini S. Experimental studies in distal urinary acidification: bringing the bedside to the bench. Semin Nephrol 1999;19: 188-194.
  23. Brown D, Gluck S, Nartwig J. Structure of the novel membranecoating material in proton-secreting epithelial cells and identification as an H+ATPase. J Cell Biol 1987;105:1637-1648. https://doi.org/10.1083/jcb.105.4.1637
  24. Gluck SL, Underhill DM, Iyori M, Holliday LS, Kostrominova TY, Lee BS. Physiology and biochemistry of the kidney vacuolar $H^+$-ATPase. Annu Rev Physiol 1996;58:427-445. https://doi.org/10.1146/annurev.ph.58.030196.002235
  25. DuBose TD Jr. Autosomal dominant distal renal tubular acidosis and the AE1 gene. Am J Kidney Dis 1999;33:1190-1197. https://doi.org/10.1016/S0272-6386(99)70164-2
  26. Dafnis E, Spohn M, Lonis B, Kurtzman NA, Sabatini S. Vanadate causes hypokalemic distal renal tubular acidosis. Am J Physiol 1992;262:F449-F453.
  27. Kim HY, Han JS, Jeon ES, et al. Defect of acid-base transporters in distal renal tubular acidosis. Korean J Nephrol 2000;19: 899-909.
  28. Smulders YM, Frissen PH, Slaats EH, Silberbusch J. Renal tubular acidosis: pathophysiology and diagnosis. Arch Intern Med 1996;156:1629-1636. https://doi.org/10.1001/archinte.1996.00440140045004