DOI QR코드

DOI QR Code

Estimation of CN-based Infiltration and Baseflow for Effective Watershed Management

효과적인 유역관리를 위한 CN기법 기반의 침투량 산정 및 기저유출량 분석

  • Kim, Heewon (Department of Regional Infrastructure Engineering Program, Kangwon National University) ;
  • Sin, Yeonju (Department of Regional Infrastructure Engineering Program, Kangwon National University) ;
  • Choi, Jungheon (Department of Regional Infrastructure Engineering Program, Kangwon National University) ;
  • Kang, Hyunwoo (Department of Regional Infrastructure Engineering Program, Kangwon National University) ;
  • Ryu, Jichul (Department of Regional Infrastructure Engineering Program, Kangwon National University) ;
  • Lim, Kyoungjae (Department of Regional Infrastructure Engineering Program, Kangwon National University)
  • 김희원 (강원대학교 지역건설공학과) ;
  • 신연주 (강원대학교 지역건설공학과) ;
  • 최정헌 (강원대학교 지역건설공학과) ;
  • 강현우 (강원대학교 지역건설공학과) ;
  • 류지철 (강원대학교 지역건설공학과) ;
  • 임경재 (강원대학교 지역건설공학과)
  • Received : 2011.01.14
  • Accepted : 2011.05.12
  • Published : 2011.07.30

Abstract

Increased Non-permeable areas which have resulted from civilization reduce the volume of groundwater infiltration that is one of the important factors causing water shortage during a dry season. Thus, seeking the efficient method to analyze the volume of groundwater in accurate should be needed to solve water shortage problems. In this study, two different watersheds were selected and precipitation, soil group, and land use were surveyed in a particular year in order to figure out the accuracy of estimated infiltration recharge ratio compared to Web-based Hydrograph Analysis Tool (WHAT). The volume of groundwater was estimated considering Antecedent soil Moisture Condition (AMC) and Curve Number (CN) using Long Term Hydrologic Impact Assessment (L-THIA) model. The results of this study showed that in the case of Kyoung-an watershed, the volume of both infiltration and baseflow seperated from WHAT was 46.99% in 2006 and 33.68% in 2007 each and in Do-am watershed the volume of both infiltration and baseflow was 33.48% in 2004 and 23.65% in 2005 respectively. L-THIA requires only simple data (i.e., land uses, soils, and precipitation) to simulate the accurate volume of groundwater. Therefore, with convenient way of L-THIA, researchers can manage watershed more effectively than doing it with other models. L-THIA has limitations that it neglects the contributions of snowfall to precipitation. So, to estimate more accurate assessment of the long term hydrological impacts including groundwater with L-THIA, further researches about snowfall data in winter should be considered.

Keywords

References

  1. 김만일, 김진훈, 장광수, 석희준, 김형수(2006). 지하수위 변동곡선 및 물수지분석 기법을 적용한 소유역 지하수 함양량 산정에 관한 연구. 춘계학술발표회 논문집, 한국지하수토양환경학회, pp. 350-354.
  2. 김종건, 박윤식, 전지홍, Bernard A. Engel, 안재훈, 박영곤, 김기성, 최중대, 임경재(2007a). 선행토양함수조건(AMC)을 고려한 L_THIA WWW 직접유출 모의 정확성 평가. 수질보전 한국물환경학회지, 23(4), pp. 474-481.
  3. 김종건, 임경재, 박윤식, 허성구, 박준호, 안재훈, 김기성, 최중대(2007b). 경사도에 따른 CN보정에 의한 L-THIA 직접유출 모의 영향 평가. 수질보전 한국물환경학회지, 23(6), pp. 897-905.
  4. 박찬제, 김태철(2002). 유역물수지 분석에 의한 지하수 함양량 추정. 학술발표회 발표논문집, 한국농공학회, pp. 265-268.
  5. 배상근, 김용호(2006). NRCS-CN방법과 기저유출 분리법을 이용한 지하수함양률 산정. 한국환경과학회지, 15(3), pp. 253-260.
  6. 이승종, 김영오, 이상호, 이길성(2005). 도림천 유역을 위한 침투증진시설의 효과분석. 학술발표회 논문집, 한국수자원학회, pp. 1-5.
  7. 이재수(2009). 수문학, 구미서관.
  8. 임경재(2006). 수문모델의 정확성 평가를 위한 Web GIS 기반의 수문분석 툴, WHAT의 소개. 한국관개배수지, 13(2), pp. 303-309.
  9. 조을생(2009). 지역단위 하수재이용 활성화를 위한 기초연구. 한국환경정책평가연구원 기초연구. 한국환경정책평가연구원. 2009(10), pp. 1-61.
  10. 최병용(2001). L-THIA 모형을 이용한 한강 상류 유역의 유출량 평가. 공학석사학위논문, 강원대학교대학원 농공학과.
  11. Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19(2), pp. 507-515. https://doi.org/10.1002/hyp.5675
  12. Habor, J. (1994). A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge and wetland hydrology. Journal of American Planing Association, 60, pp. 91-104.
  13. Kim, T. C. (1992). Manual of the DAWAST model. Institute of Agricultural Science. Institute of Agricultural Science.
  14. Lim, K. J., Engel, B. A., Kim, Y. S., Bhaduri, B., and Habor, J. (1999). Development of the long-term hydrologic impact assessment (L-THIA) WWW system. Agricultural and Biological Engineering Department Report. Purdue University.
  15. Lim, K. J., Engel, B. A., Tang, Z., Muthukrishnan, S., Choi, J., and Kim, K. (2005a). Effects of calibration on L-THIA GIS runoff and pollutant estimation. Journal of Environmental Management, 78, pp. 1-9.
  16. Lim, K. J., Engel, B. A., Tang, Z., Choi, J. D., Kim, K. S., Muthukrishnan, S., and Tripathy, D. (2005b). Automated web GIS based hydrograph analysis tool. WHAT. Journal of the American Water Resources Association, 41(6), pp. 1407-1416. https://doi.org/10.1111/j.1752-1688.2005.tb03808.x
  17. Ma, Y. S. (2004). L-THIA: Useful hydrologic impact assessment model. Nature and Science, 2(1), pp. 68-73.
  18. NRCS (1972). Hydrology SCS National Engineering Handbook Section 4.