DOI QR코드

DOI QR Code

Preparation and PTC Characteristics of Silicone Modified Maleated PE/HDPE/CNT

Silicone 변성 말레화 PE/HDPE/CNT Composite의 제조와 PTC 특성

  • Kang, Doo Whan (Department of Polymer Science and Engineering, Dankook University) ;
  • Park, Seung Woo (Department of Polymer Science and Engineering, Dankook University)
  • 강두환 (단국대학교 공과대학 고분자시스템공학과) ;
  • 박승우 (단국대학교 공과대학 고분자시스템공학과)
  • Received : 2010.12.15
  • Accepted : 2010.12.28
  • Published : 2011.02.10

Abstract

${\alpha},{\omega}$-Hydroxypropylpoly(dimethylsiloxane) was prepared from the reaction of a ${\alpha},{\omega}$-hydrogen polydimethylsiloxane with an allyl alcohol. MPE-g-poly(dimethylsiloxane) copolymer (MPES) was prepared from the graft copolymerization of MPE with ${\alpha},{\omega}$-hydroxypropyl group terminated PDMS. MPES/HDPE/EtO-CNT need to varify was prepared from the compounding of MPES, HDPE, and surface treated MWCNT with 4-ethoxybenzoic acid at $180^{\circ}C$. Melting point of the MPES/HDPE/EtO-CNT composite was decreased from 130 to $129^{\circ}C$ as increasing the content of MWCNT 10 to 20 wt% in the composite PTC characteristic of the MPES/HDPE/EtO-CNT composite was appeared at $120^{\circ}C$ as abruptly increasing the electrical resistivity at this temperature. The heighest PTC intensity of MPES/HDPE/EtO-CNT compsite at 10 wt% loading of EtO-CNT was 1.9.

${\alpha},{\omega}$-Hydroxypropylpoly(dimethylsiloxane)은 ${\alpha},{\omega}$-hydrogenpolydimethylsiloxane을 allyl alcohol과 반응시켜 제조하였으며 이를 말레화 PE에 그라프트 시켜 MPE-g-PDMS 공중합체(MPES)를 제조하였다. MPES와 HDPE 및 4-ethoxybenzoic acid로 표면처리 된 MWCNT를 internal mixer에 가하고 $180^{\circ}C$에서 compounding하여 MPES/HDPE/EtO-CNT 복합체를 제조하였다. 열적특성을 측정한 결과 표면처리 된 CNT의 함량을 10에서 20 wt%로 증가시켜 제조한 MPES/CNT 복합체의 $T_m$은 132에서 $131^{\circ}C$로 약간 감소되었고 MPES/EtO-CNT 복합체의 경우 EtO-CNT의 함량을 10에서 20 wt%로 증가시킴에 따라 130에서 $129^{\circ}C$으로 약간 감소되었다. 또한 EtO-CNT를 사용하여 제조한 복합체의 경우 $120^{\circ}C$에서 전기저항이 급격하게 증가되어 PTC 현상이 나타났으며 또한 EtO-CNT의 함량을 10 wt%로 하여 제조한 복합체의 PTC intensity가 1.9로 가장 높게 나타났다.

Keywords

Acknowledgement

Supported by : 단국대학교

References

  1. G. G. Hamman, Phys. Rev., 106, 1358 (1957). https://doi.org/10.1103/PhysRev.106.1358
  2. Y. Chekanov, R. Ohnogi, S. Asai, and M. Sumita, Polym. J., 30, 381 (1978).
  3. E. Andrich, Philips Tech, Rev., 30, 170 (1969).
  4. J. Meyer, Polym. Engr. Sci., 13, 462 (1973). https://doi.org/10.1002/pen.760130611
  5. R. Strumpler, G. Maidron, and J. Phyner, J. Appl. Phys., 81, 6986 (1997). https://doi.org/10.1063/1.365263
  6. Z. Z. Huang, R. Yue, H. W. Chan, and C. L Choy, Polymer Composite, 19, 781 (1978).
  7. F. Kohler, U. S. Pat, 3, 243, 753 (1996).
  8. J. Feng and C. M. Chan, Polymer, 41, 7279 (2000). https://doi.org/10.1016/S0032-3861(00)00095-1
  9. K. Ohe and Y. Natio, Jap, J. Appl. Phys., 10, 99 (1971). https://doi.org/10.1143/JJAP.10.99
  10. J. H. Kim, H. N. Cho, and J. O. Nam, Macromol. Res., 12, 53 (2004). https://doi.org/10.1007/BF03218995
  11. D. W. Kang and Y. N. Yoon, Appl. Chem. Eng., 21, 46 (2010).
  12. J. B. Baek, H. J. Lee, S. J. Oh, J. Y. Choi, and J. W. Kim, Chem. Mater., 17, 5057 (2005). https://doi.org/10.1021/cm051218t
  13. D. W. Kang and B. C. Lee, Polym (Korea), 30, 224 (2006).