DOI QR코드

DOI QR Code

Effects of Propranolol on the Left Ventricular Volume of Normal Subjects During CT Coronary Angiography

  • Mo, Yuan Heng (Institute of Biomedical Engineering, College of Engineering and the College of Medicine, National Taiwan University) ;
  • Jaw, Fu Shan (Institute of Biomedical Engineering, College of Engineering and the College of Medicine, National Taiwan University) ;
  • Wang, Yung Cheng (Department of Radiology, Cathay General Hospital) ;
  • Jeng, Chin Ming (Department of Radiology, Cathay General Hospital) ;
  • Peng, Shinn Forng (Department of Medical Imaging, National Taiwan University Hospital)
  • Published : 2011.06.01

Abstract

Objective: The purpose of this study is to determine the effects of propranolol on the left ventricular (LV) volume during CT coronary angiography. Materials and Methods: The LV volume of 252 normal Chinese subjects (126 subjects with propranolol medication and 126 age- and gender-matched Chinese subjects without medication) was estimated using 64 slices multi-detector CT (MDCT). The heart rate difference was analyzed by the logistic linear regression model with variables that included gender, age, body height, body weight, systolic blood pressure (SBP), diastolic blood pressure (DBP) and the dosage of propranolol. The following global LV functional parameters were calculated: the real-end diastolic volume (EDV), the real-end systolic volume (ESV) and the real-ejection fraction (EF). Results: The female subjects had a greater decrease of heart rate after taking propranolol. The difference of heart rate was negatively correlated with the dosage of propranolol. The real-EDV, the real-ESV and the real-EF ranged from 48.1 to 109 mL/$m^2$, 6.1 to 57.1 mL/$m^2$ and 41% to 88%, respectively. There was no significant difference in the SBP and DBP between the groups without and with propranolol medication (123 ${\pm}$ 17 and 80 ${\pm}$ 10 mmHg; 120 ${\pm}$ 14 and 80 ${\pm}$ 11 mmHg, respectively). The real-EDV showed no significant difference between these two groups, but the real-ESV and real- EF showed significant differences between these two groups (69.4 ${\pm}$ 9.3 and 70.6 ${\pm}$ 8.9 mL/$m^2$ 23.5 ${\pm}$ 5.7 and 25.6 ${\pm}$ 3.7 mL/$m^2$, 66.5 ${\pm}$ 5.1% and 63.5 ${\pm}$ 4.6%, respectively). Conclusion: The difference of heart rate is significantly influenced by gender and the dosage of propranolol. Propranolol will also increase the ESV, which contributes to a decreased EF, while the SBP, DBP and EDV are not statistically changed.

Keywords

References

  1. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 2005;26:1482-1487 https://doi.org/10.1093/eurheartj/ehi261
  2. Raff GL, Gallagher MJ, O'Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005;46:552-557 https://doi.org/10.1016/j.jacc.2005.05.056
  3. Mollet NR, Cademartiri F, van Mieghem CA, Runza G, McFadden EP, Baks T, et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 2005;112:2318-2323 https://doi.org/10.1161/CIRCULATIONAHA.105.533471
  4. Nikolaou K, Knez A, Rist C, Wintersperger BJ, Leber A, Johnson T, et al. Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 2006;187:111-117 https://doi.org/10.2214/AJR.05.1697
  5. Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 2006;114:1761-1791 https://doi.org/10.1161/CIRCULATIONAHA.106.178458
  6. Stolzmann P, Scheffel H, Trindade PT, Plass AR, Husmann L, Leschka S, et al. Left ventricular and left atrial dimensions and volumes: comparison between dual-source CT and echocardiography. Invest Radiol 2008;43:284-289 https://doi.org/10.1097/RLI.0b013e3181626853
  7. van der Vleuten PA, Willems TP, Gotte MJ, Tio RA, Greuter MJ, Zijlstra F, et al. Quantification of global left ventricular function: comparison of multidetector computed tomography and magnetic resonance imaging. a meta-analysis and review of the current literature. Acta Radiol 2006;47:1049-1057 https://doi.org/10.1080/02841850600977760
  8. Wu YW, Tadamura E, Yamamuro M, Kanao S, Okayama S, Ozasa N, et al. Estimation of global and regional cardiac function using 64-slice computed tomography: a comparison study with echocardiography, gated-SPECT and cardiovascular magnetic resonance. Int J Cardiol 2008;128:69-76 https://doi.org/10.1016/j.ijcard.2007.06.017
  9. Puesken M, Fischbach R, Wenker M, Seifarth H, Maintz D, Heindel W, et al. Global left-ventricular function assessment using dual-source multidetector CT: effect of improved temporal resolution on ventricular volume measurement. Eur Radiol 2008;18:2087-2094 https://doi.org/10.1007/s00330-008-0982-1
  10. Busch S, Johnson TR, Wintersperger BJ, Minaifar N, Bhargava A, Rist C, et al. Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings. Eur Radiol 2008;18:570-575 https://doi.org/10.1007/s00330-007-0767-y
  11. Bastarrika G, Arraiza M, De Cecco CN, Mastrobuoni S, Ubilla M, Rabago G. Quantification of left ventricular function and mass in heart transplant recipients using dual-source CT and MRI: initial clinical experience. Eur Radiol 2008;18:1784-1790 https://doi.org/10.1007/s00330-008-0949-2
  12. Bansal D, Singh RM, Sarkar M, Sureddi R, McBreen KC, Griffis T, et al. Assessment of left ventricular function: comparison of cardiac multidetector-row computed tomography with twodimension standard echocardiography for assessment of left ventricular function. Int J Cardiovasc Imaging 2008;24:317-325 https://doi.org/10.1007/s10554-007-9252-6
  13. Schlosser T, Mohrs OK, Magedanz A, Voigtlander T, Schmermund A, Barkhausen J. Assessment of left ventricular function and mass in patients undergoing computed tomography (CT) coronary angiography using 64-detector-row CT: comparison to magnetic resonance imaging. Acta Radiol 2007;48:30-35 https://doi.org/10.1080/02841850601067611
  14. Nakamura K, Funabashi N, Uehara M, Suzuki K, Terao M, Okubo K, et al. Quantitative 4-dimensional volumetric analysis of left ventricle in ischemic heart disease by 64-slice computed tomography: a comparative study with invasive left ventriculogram. Int J Cardiol 2008;129:42-52 https://doi.org/10.1016/j.ijcard.2007.06.060
  15. Chaosuwannakit N, Rerkpattanapipat P, Wangsuphachart S, Srimahachota S. Reliability of the evaluation for left ventricular ejection fraction by ECG-gated multi-detector CT (MDCT): comparison with biplane cine left ventriculography. J Med Assoc Thai 2007;90:532-538
  16. Abbara S, Chow BJ, Pena AJ, Cury RC, Hoffmann U, Nieman K, et al. Assessment of left ventricular function with 16- and 64-slice multi-detector computed tomography. Eur J Radiol 2008;67:481-486 https://doi.org/10.1016/j.ejrad.2007.07.022
  17. Suzuki S, Furui S, Kaminaga T, Yamauchi T, Suzuki D, Kuwahara S, et al. Accuracy and efficiency of left ventricular ejection fraction analysis, using multidetector row computed tomography: effect of image reconstruction window within cardiac phase, slice thickness, and interval of short-axis sections. Circ J 2006;70:289-296 https://doi.org/10.1253/circj.70.289
  18. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer- Mascherbauer R, et al. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 2006;114:654-661 https://doi.org/10.1161/CIRCULATIONAHA.106.626143
  19. Schepis T, Gaemperli O, Koepfli P, Valenta I, Strobel K, Brunner A, et al. Comparison of 64-slice CT with gated SPECT for evaluation of left ventricular function. J Nucl Med 2006;47:1288-1294
  20. Raman SV, Shah M, McCarthy B, Garcia A, Ferketich AK. Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 2006;151:736-744 https://doi.org/10.1016/j.ahj.2005.04.029
  21. Orakzai SH, Orakzai RH, Nasir K, Budoff MJ. Assessment of cardiac function using multidetector row computed tomography. J Comput Assist Tomogr 2006;30:555-563 https://doi.org/10.1097/00004728-200607000-00001
  22. Juergens KU, Fischbach R. Left ventricular function studied with MDCT. Eur Radiol 2006;16:342-357 https://doi.org/10.1007/s00330-005-2888-5
  23. Henneman MM, Schuijf JD, Jukema JW, Holman ER, Lamb HJ, de Roos A, et al. Assessment of global and regional left ventricular function and volumes with 64-slice MSCT: a comparison with 2D echocardiography. J Nucl Cardiol 2006;13:480-487 https://doi.org/10.1016/j.nuclcard.2006.03.005
  24. Belge B, Coche E, Pasquet A, Vanoverschelde JL, Gerber BL. Accurate estimation of global and regional cardiac function by retrospectively gated multidetector row computed tomography: comparison with cine magnetic resonance imaging. Eur Radiol 2006;16:1424-1433 https://doi.org/10.1007/s00330-006-0169-6
  25. Yamamuro M, Tadamura E, Kubo S, Toyoda H, Nishina T, Ohba M, et al. Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology 2005;234:381-390 https://doi.org/10.1148/radiol.2342031271
  26. Juergens KU, Grude M, Maintz D, Fallenberg EM, Wichter T, Heindel W, et al. Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 2004;230:403-410 https://doi.org/10.1148/radiol.2302030042
  27. Dell'Italia LJ, Walsh RA. Effect of intravenous metoprolol on left ventricular performance in Q-wave acute myocardial infarction. Am J Cardiol 1989;63:166-171 https://doi.org/10.1016/0002-9149(89)90279-8
  28. Port S, Cobb FR, Jones RH. Effects of propranolol on left ventricular function in normal men. Circulation 1980;61:358-366 https://doi.org/10.1161/01.CIR.61.2.358
  29. Silke B, Verma SP, Frais MA, Reynolds G, Taylor SH. Comparative effects of metoprolol and celiprolol on cardiac hemodynamics and left ventricular volume at rest and during exercise-induced angina. Clin Pharmacol Ther 1986;39:5-14 https://doi.org/10.1038/clpt.1986.2
  30. Tsusaki H, Yonamine H, Tamai A, Shimomoto M, Kuwano K, Iwao H, et al. Left ventricular volume and function in cynomolgus monkeys using real-time three-dimensional echocardiography. J Med Primatol 2007;36:39-46 https://doi.org/10.1111/j.1600-0684.2006.00192.x
  31. Luzier AB, Killian A, Wilton JH, Wilson MF, Forrest A, Kazierad DJ. Gender-related effects on metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Pharmacol Ther 1999;66:594-601 https://doi.org/10.1053/cp.1999.v66.103400001
  32. Goo HW. State-of-the-art CT imaging techniques for congenital heart disease. Korean J Radiol 2010;11:4-18 https://doi.org/10.3348/kjr.2010.11.1.4
  33. Leschka S, Husmann L, Desbiolles LM, Gaemperli O, Schepis T, Koepfli P, et al. Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 2006;16:1964-1972 https://doi.org/10.1007/s00330-006-0262-x
  34. Seifarth H, Wienbeck S, Pusken M, Juergens KU, Maintz D, Vahlhaus C, et al. Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. AJR Am J Roentgenol 2007;189:1317-1323 https://doi.org/10.2214/AJR.07.2711

Cited by

  1. Examination of the Effectiveness of Heart Rate Control Using Intravenous ^|^beta;-blocker in 64-slice Coronary Computed Tomography Angiography vol.68, pp.9, 2011, https://doi.org/10.6009/jjrt.2012_jsrt_68.9.1250
  2. Time Efficiency and Diagnostic Accuracy of New Automated Myocardial Perfusion Analysis Software in 320-Row CT Cardiac Imaging vol.14, pp.1, 2011, https://doi.org/10.3348/kjr.2013.14.1.21
  3. MDCT Derived Left Ventricular Function in Relation to Echocardiography: Validation and Revising the Role with the Evolving Technology vol.24, pp.1, 2014, https://doi.org/10.4103/2211-4122.132280
  4. Estimation of Diastolic Filling Pressure with Cardiac CT in Comparison with Echocardiography Using Tissue Doppler Imaging: Determination of Optimal CT Reconstruction Parameters vol.18, pp.4, 2011, https://doi.org/10.3348/kjr.2017.18.4.632
  5. Left Ventricular Functional Parameters and Geometric Patterns in Korean Adults on Coronary CT Angiography with a 320-Detector-Row CT Scanner vol.18, pp.4, 2011, https://doi.org/10.3348/kjr.2017.18.4.664
  6. Testing the Translational Power of the Zebrafish: An Interspecies Analysis of Responses to Cardiovascular Drugs vol.10, pp.None, 2019, https://doi.org/10.3389/fphar.2019.00893