DOI QR코드

DOI QR Code

8배위 터븀 (III) 착화합물의 합성과 Photoluminescence 특성

Photoluminescence properties of eight coordinated terbium(III) complexes

  • 투고 : 2011.11.22
  • 심사 : 2011.12.06
  • 발행 : 2011.12.25

초록

3종의 8배위 터븀 착화합물 [tris (2-pyrazinecarboxylato) (phenanthroline) terbium (III), tris (5-methyl-2-pyrazinecarboxylato) (phenanthroline) terbium(III) 및 tris (2-picolinato) (phenanthroline) terbium (III)]을 합성하고, 이 화합물을 FT-IR, UV 및 XPS 사용하여 특성평가 하였다. 또한, PL 스펙트라를 통하여 합성된 터븀 착화합물은 강한 녹색 형광을 방출하는 것을 확인하였으며, 시간 분해 분광분석기를 통하여 합성된 터븀 착화합물의 형광 반감기가 0.87 ms 및 1.0 ms임을 알았고, 열분석을 통하여 합성된 터븀 착화합물의 열안정성은 $333-379^{\circ}C$ 나타내는 것을 확인하였다. CV를 통하여 합성된 터븀 착화합물의 경우 HOMO-LUMO 에너지 차이가 4.26~4.41 eV를 나타냈는데, 이것은 UV-visible 스펙트라에서 얻은 값과 유사한 값임을 확인하였다. 따라서, 제조된 터븀 착화합물은 초록색을 발광하는 디바이스 재료로 사용할 수 있다.

Eight coordinated terbium(III) complexes, tris (2-pyrazinecarboxylato)(phenanthroline) terbium(III) [$Tb(pzc)_3$(phen)], tris (5-methyl-2-pyrazinecarboxylato) (phenanthroline) terbium(III) [$Tb(mpzc)_3$(phen)] and tris(2-picolinato) (phenanthroline) terbium(III) [$Tb(pic)_3$(phen)], have been synthesized and characterized by Fourier transform infrared (FT-IR), UV-Visible and X-ray photoelectron spectroscopy. Photoluminescence (PL) spectroscopy shows that these complexes emitted strong green luminescence. When powder samples of the $Tb^{3+}$ complexes are examined using time-resolved spectroscopic analysis, the luminescence lifetimes are found to be 0.87 ms and 1.0 ms, respectively. Thermogravimetric analysis reveals the terbium complexes to have good thermal stability up to $333-379^{\circ}C$. Cyclic voltammetry shows that HOMO-LUMO energy gap of the $Tb^{3+}$ complexes ranges from 4.26~4.41 eV. These values are similar to those obtained from the UV-visible spectra. Overall, the synthesized $Tb^{3+}$ complexes may be useful advanced materials for green light emitting devices.

키워드

참고문헌

  1. J. Kido, K. Nagai and Y. J. Okamato, Alloys Compds., 192, 30-33 (1993). https://doi.org/10.1016/0925-8388(93)90176-N
  2. X. Zhang, R. Sun, Q. Zheng, T. Koboyashi and W. Li, Appl. Phys. Lett., 71, 2596-2598 (1997). https://doi.org/10.1063/1.119339
  3. H. J. Kim, J. E. Lee, Y. S. Kim and N. G. Park, Opt. Mater., 21, 181-186 (2002). https://doi.org/10.1016/S0925-3467(02)00133-7
  4. J. Guo, L, Fu, H. Li, Y. Zheng, Q. Meng, S. Wang, F. Liu, J. Wang and H. Zhang, Mater. Lett., 447, 1 (2003).
  5. H. J. Zhang, L. S. Fu, S. B. Wang, Q. G. Meng, K. Y. Yang and J. Z. Ni, Mater. Lett., 38, 260-264 (1999). https://doi.org/10.1016/S0167-577X(98)00169-4
  6. Q. Li, T. Li and J. Wu, J. Phys. Chem. B, 105, 12293- 12296 (2001). https://doi.org/10.1021/jp012922+
  7. L. R. Melby, N. J. Rose, E. Abramson and J. C. Caris, J. Am. Chem. Soc., 86, 5117-5125 (1964). https://doi.org/10.1021/ja01077a015
  8. J. Kido and Y. Okamato, Chem. Rev., 102, 2357-2368 (2002). https://doi.org/10.1021/cr010448y
  9. Y. Zheng, C. Shi, Y. Liang, Q. Lin, C. Guo and H. Zhang, Synth. Met., 114, 321-323 (2000). https://doi.org/10.1016/S0379-6779(00)00265-4
  10. I. Grenthe, J. Am. Chem. Soc., 83, 360-364 (1961). https://doi.org/10.1021/ja01463a024
  11. J. M. Harrowfield, Y. Kim, B. W. Skelton and A. H. White, Aust., J. Chem., 48, 807-823 (1995).
  12. B. L. An, Y. F. Luo, J. Q. Ye, K. C. Mai, J. X. Shi and M. L. Gong, J. Chin. Rare Earth Soc., 19, 268-272 (2001).
  13. R. W. Matthew and R. A. Walton, Inorg. Chem., 10, 1433-1438 (1971). https://doi.org/10.1021/ic50101a023
  14. W. Bo and M. Hongzhu, Inorg. Chem. Comm., 3, 243- 247 (2000). https://doi.org/10.1016/S1387-7003(00)00024-1
  15. G. L. P. Bernig and H. C. Swart, Appl. Surf. Sci., 78, 339-343 (1994). https://doi.org/10.1016/0169-4332(94)90058-2
  16. J. M. Ouyang, W. J. Zheng, N. X. Huang and Z. H. Tai, Thin Solid Films, 340, 257-261 (1999). https://doi.org/10.1016/S0040-6090(98)01357-1
  17. L. Hongzhi, D. Patrick and K. Wei, Chem. Phys. Lett., 273, 272-278 (1997). https://doi.org/10.1016/S0009-2614(97)00566-6
  18. R. C. Hirt, Spectrochim. Acta., 12, 114-126 (1958). https://doi.org/10.1016/0371-1951(58)80024-7
  19. X. G. Gao, C. Hong and C. H. Huang, Synth. Met., 99, 127-132 (1999). https://doi.org/10.1016/S0379-6779(98)01487-8
  20. K. Binnemans and C. Gorller-Walrand, Chem. Phys. Lett., 235, 163-174 (1995). https://doi.org/10.1016/0009-2614(95)00126-O
  21. S. Sato and M. Wada, Bull. Chem. Soc. Jpn., 43, 1955- 1962 (1970). https://doi.org/10.1246/bcsj.43.1955
  22. M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J.C. Rodriguez-Ubis and J. Kankare, J. Lumin., 75, 149-169 (1997). https://doi.org/10.1016/S0022-2313(97)00113-0
  23. N. Sabbatini, M. Guardigli and J. M. Lehn, Coord. Chem. Rev., 123, 201-228 (1993). https://doi.org/10.1016/0010-8545(93)85056-A
  24. S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts and J. W. Hofstraat, J. Phys. Chem. A, 104, 5457-5468 (2000). https://doi.org/10.1021/jp994286+
  25. X. Jiang, A. K. Jen, D. Huang and G. D. Phelan, Synth. Met., 125, 331-3366 (2002).
  26. K. Okada, Y. F. Wang and T. Nakaya, Synth. Met., 97, 113-116 (1998). https://doi.org/10.1016/S0379-6779(98)00118-0
  27. Y. Zheng, J. Lin, Y. Liang, Q. Lin, Y. Yu, S. Wang, C. Guo and H. Zhang, Opt. Mat., 20, 273-278 (2002). https://doi.org/10.1016/S0925-3467(02)00045-9
  28. N. Arnaud and J. Georges, Spectrochim. Acta A., 59, 1829-1840 (2003). https://doi.org/10.1016/S1386-1425(02)00414-6