DOI QR코드

DOI QR Code

Characteristics of Hematopoitic Growth Factor, G-CSF and Its Clinical Vision

조혈성장인자 G-CSF 특성과 임상적 비젼

  • Park, Jeong-Hae (Department of Clinical Laboratory Science, Dong Eui University) ;
  • Park, Jung-Ae (Department of Clinical Laboratory Science, Dong Eui University) ;
  • Kang, Seok-Woo (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Goo, Tae-Won (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Chung, Kyung-Tae (Department of Clinical Laboratory Science, Dong Eui University)
  • 박정혜 (동의대학교 임상병리학과) ;
  • 박정애 (동의대학교 임상병리학과) ;
  • 강석우 (국립농업과학원 농업생물부) ;
  • 구태원 (국립농업과학원 농업생물부) ;
  • 정경태 (동의대학교 임상병리학과)
  • Received : 2011.11.17
  • Accepted : 2011.11.25
  • Published : 2011.11.30

Abstract

The production of blood cells is regulated by more than 20 different growth factors, called hematopoitic growth factors. These factors have been produced in prokaryotic and mammalian systems for their clinical use. Glranulocyte-Colony Stimulating Factor (G-CSF) is an important therapeutic factor for cancer patients as well as patients with congenital conditions. These patients do not have enough neutrophils and have a high risk of infection. Two groups of recombinant G-CSF have been used to specially treat cancer patients after chemotherapy because chemotherapy induces neutropenia, a major side effect of chemotherapy drugs. Here, structural and biological characteristics of G-CSF are presented. In addition, the relationship between chemotherapy and neutropenia, which is a severe reduction of neutrophils in the blood, and clinical application of G-CSF is discussed. Recombinant G-CSFs are grouped in two forms. Non-glycosylated G-CSF, filgrastim, is produced in Escherichia coli and glycosylated G-CSF, lenograstim, is produced in Chinese hamster ovary cells. Differences in structure and biological activity are compared and challenges for biosimilar production are also highlighted.

혈액세포의 분화와 성장은 20 여종 이상의 성장인자에 의해 조절된다. 혈액세포 생산에 관여하는 인자를 조혈 성장인자(hematopoitic growth factor)라고 한다. 조혈성장인자를 임상적으로 사용하기 위해 원핵생물 또는 진핵 생물 생산 시스템에서 재조합 단백질로 생산되고 있다. 그 중에서 Glranulocyte-Colony Stimulating Factor(G-CSF)는 호중구 세포 수가 감소된 암환자와 선천성 질병을 가진 환자에게 임상적 치료제로 아주 중요한 역할을 한다. 이 환자들은 충분하지 못한 호중구 세포로 말미암아 감염에 대한 위험이 아주 높으며 치사율 또한 높다. 두 종류의 재조합 G-CSF가 항암치료 후 발생하는 부작용으로 나타나는 호중구 세포 감소증 치료에 사용되고 있다. G-CSF의 중요성에 맞추어 G-CSF의 물리적 및 생물학적 기능에 대한 특성을 설명하였으며, 또한 항암치료와 G-CSF의 임상적 사용에 대한 연관성을 토론하였다. 마지막으로 두 종류의 재조합 G-CSF인 non-glycosylated G-CSF, filgrastim과 glycosylated G-CSF를 비교 설명하였으며, 이들 기존의 G-CSF에 비교되는 바이오시밀러에 대한 전망을 제시하였다.

Keywords

References

  1. Aapro, M., J. Bohlius, D. Cameron, L. Dal Lago, J. Donnelly, N. Kearney, G. Lyman, R. Pettengell, V. Tjan-Heijnen, J. Walewski, D. Weber, and C. Zielinski. 2011. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy- induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur. J. Cancer 47, 8-32.
  2. Anderlini, P. 2009. Effects and safety of granulocyte colony- stimulating factor in healthy volunteers. Curr. Opin. Hematol. 16, 35-40. https://doi.org/10.1097/MOH.0b013e328319913c
  3. Brandt, S., W. Peters, S. Atwater, J. Kurtzberg, M. Borowitz, R. Jones, E. Shpall, R. Bast, Jr, C. Gilbert, and D. Oette. 1988. Effect of recombinant human granulocyte-macrophage colony- stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N. Engl. J. Med. 318, 869-876. https://doi.org/10.1056/NEJM198804073181401
  4. Cooper, K., J. Madan, S. Whyte, M. Stevenson, and R. Akehurst. 2011. Granulocyte colony-stimulating factors for febrile neutropenia prophylaxis following chemotherapy: systematic review and meta-analysis. BMC Cancer 11, 404. https://doi.org/10.1186/1471-2407-11-404
  5. Cowling, G. and T. Dexter. 1992. Erythropoietin and myeloid colony stimulating factors. Trends Biotechnol. 10, 349-357. https://doi.org/10.1016/0167-7799(92)90267-Y
  6. Crawford, J., D. Dale, and G. Lyman. 2004. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer 100, 228-237. https://doi.org/10.1002/cncr.11882
  7. Diederichs, K., S. Jacques, T. Boone, and P. Karplus. 1991. Low-resolution structure of recombinant human granulocyte- macrophage colony stimulating factor. J. Mol. Biol. 221, 55-60. https://doi.org/10.1016/0022-2836(91)80203-7
  8. Gervais, V., A. Zerial, and H. Oschkinat. 1997. NMR investigations of the role of the sugar moiety in glycosylated recombinant human granulocyte-colony-stimulating factor. Eur. J. Biochem. 247, 386-395. https://doi.org/10.1111/j.1432-1033.1997.00386.x
  9. Hill, C., T. Osslund, and D. Eisenberg. 1993. The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proc. Natl. Acad. Sci. USA 90, 5167-5171. https://doi.org/10.1073/pnas.90.11.5167
  10. Hoglund, M. 1998. Glycosylated and non-glycosylated recombinant human granulocyte colony-stimulating factor (rhG-CSF)--what is the difference? Med. Oncol. 15, 229-233. https://doi.org/10.1007/BF02787205
  11. Hughes, W., D. Armstrong, G. Bodey, E. Bow, A. Brown, T. Calandra, R. Feld, P. Pizzo, K. Rolston, J. Shenep, and L. Young. 2002. Guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin. Infect. Dis. 34, 730-751. https://doi.org/10.1086/339215
  12. Keating, G. 2011. Lenograstim: a review of its use in chemotherapy- induced neutropenia, for acceleration of neutrophil recovery following haematopoietic stem cell transplantation and in peripheral blood stem cell mobilization. Drugs 71, 679-707. https://doi.org/10.2165/11206870-000000000-00000
  13. Kindt, T., R. Goldsby, B. Osborne, and J. Kuby. 2007. The Immune System. 6th eds. Chapter 2. W.H. Freeman, New York, NY.
  14. Klumpp, T., K. Mangan, S. Goldberg, E. Pearlman, and J. Macdonald. 1995. Granulocyte colony-stimulating factor accelerates neutrophil engraftment following peripheral-blood stem-cell transplantation: a prospective, randomized trial. J. Clin. Oncol. 13, 1323-1327.
  15. Kuderer, N., D. Dale, J. Crawford, L. Cosler, and G. Lyman. 2006. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 106, 2258-2266. https://doi.org/10.1002/cncr.21847
  16. Lieschke, G., D. Grail, G. Hodgson, D. Metcalf, E. Stanley, C. Cheers, K. Fowler, S. Basu, Y. Zhan, and A. Dunn. 1994. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737-1746.
  17. Lu, H., C. Clogston, L. Narhi, L. Merewether, W. Pearl, and T. Boone. 1992. Folding and oxidation of recombinant human granulocyte colony stimulating factor produced in Escherichia coli. Characterization of the disulfide-reduced intermediates and cysteine-serine analogs. J. Biol. Chem. 267, 8770-8777.
  18. Martin-Christin, F. 2001. Granulocyte colony stimulating factors: how different are they? How to make a decision? Anticancer Drugs 12, 185-191. https://doi.org/10.1097/00001813-200103000-00002
  19. McQuaker, I., A. Hunter, S. Pacey, A. Haynes, A. Iqbal, and N. Russell. 1997. Low-dose filgrastim significantly enhances neutrophil recovery following autologous peripheral-blood stem-cell transplantation in patients with ymphoproliferative disorders: evidence for clinical and economic benefit. J. Clin. Oncol. 15, 451-457.
  20. Nagata, S., M. Tsuchiya, S. Asano, Y. Kaziro, T. Yamazaki, O. Yamamoto, Y. Hirata, N. Kubota, M. Oheda, and H. Nomura. 1986. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319, 415-418. https://doi.org/10.1038/319415a0
  21. Nagata, S., M. Tsuchiya, S. Asano, O. Yamamoto, Y. Hirata, N. Kubota, M. Oheda, H. Nomura, and T. Yamazaki. 1986. The chromosomal gene structure and two mRNAs for human granulocyte colony-stimulating factor. EMBO J. 5, 575-581.
  22. Nissen, C. 1994. Glycosylation of recombinant human granulocyte colony stimulating factor: implications for stability and potency. Eur. J. Cancer 30A, S12-14.
  23. Oh-eda, M., M. Hasegawa, K. Hattori, H. Kuboniwa, T. Kojima, T. Orita, K. Tomonou, T. Yamazaki, and N. Ochi. 1990. O-linked sugar chain of human granulocyte colony- stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity. J. Biol. Chem. 265, 11432-11435.
  24. Ono, M., M. Oh-eda, S. Kamachi, M. Kato, Y. Endo, and N. Ochi. 1992. Structure of G-CSF: significance of the sugar chain. J. Nutr. Sci. Vitaminol. (Tokyo) Spec No, 337-340.
  25. Ono, M. 1994. Physicochemical and biochemical characteristics of glycosylatedrecombinant human granulocyte colony stimulating factor (lenograstim). Eur. J. Cancer 30A, S7-11.
  26. Pandit, J., A. Bohm. J. Jancarik, R. Halenbeck, K. Koths, and S. Kim. 1992. Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor. Science 258, 1358-1362. https://doi.org/10.1126/science.1455231
  27. Parham, P. 2009. The Immune system, 3 eds, Garland Science, New York, NY.
  28. Procopio, G., M. Niger, and I. Testa. 2011. Lecture: management of chemotherapy-induced febrile neutropenia; guidelines and colony stimulating factors. Neurol. Sci. [Epub ahead of print].
  29. Ria, R., T. Gasparre, G. Mangialardi, A. Bruno, G. Iodice, A. Vacca, and F. Dammacco. 2010. Comparison between filgrastim and lenograstim plus chemotherapy for mobilization of PBPCs. Bone Marrow Transplant 45, 277-281. https://doi.org/10.1038/bmt.2009.150
  30. Scrip Report. 2007. Biosimilar, Biogenerics and Follow-on Biologics. Informa UK Ltd. (http://www.scripintelligence.com/multimedia/archive/00000/BS1342_117a.pdf)
  31. Smith, L., C. Redfield, J. Boyd, G. Lawrence, R. Edwards, R. Smith, and C. Dobson. 1992. Human interleukin 4. The solution structure of a four-helix bundle protein. J. Mol. Biol. 224, 899-904. https://doi.org/10.1016/0022-2836(92)90457-U
  32. Sourgens, H. and F. Lefrere. 2011. A systematic review of available clinical evidence-filgrastim compared with lenograstim. Int. J. Clin. Pharmacol. Ther. 49, 510-518. https://doi.org/10.5414/CP201537
  33. Sorgel, F., H. Lerch, and T. Lauber. 2010. Physicochemical and biologic comparability of a biosimilar granulocyte colony- stimulating factor with its reference product. BioDrugs 24, 347-357. https://doi.org/10.2165/11585100-000000000-00000
  34. Souza, L., T. Boone, J. Gabrilove, P. Lai, K. Zsebo, D. Murdock, V. Chazin, J. Bruszewski, H. Lu, K. Chen, J. Barendt, E. Platzer, M. Moore, R. Mertelsmann, and K. Welte. 1986. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 232, 61-65. https://doi.org/10.1126/science.2420009
  35. Wadhwa, M., C. Bird, M. Hamill, A. Heath, P. Matejtschuk, and R. Thorpe. 2011. The 2nd International Standard for human granulocyte colony stimulating factor. J. Immunol. Methods 367, 63-69. https://doi.org/10.1016/j.jim.2011.02.005
  36. Walter, M., W. Cook, B. Zhao, R. Jr. Cameron, S. Ealick. R. Jr. Walter, P. Reichert, T. Nagabhushan, P. Trotta, and C. Bugg. 1992. Crystal structure of recombinant human interleukin- 4. J. Biol. Chem. 267, 20371-20376.
  37. Zink, T., A. Ross, K. Luers, C. Cieslar, R. Rudolph, and T. Holak. 1994. Structure and dynamics of the human granulocyte colony-stimulating factor determined by NMR spectroscopy. Loop mobility in a four-helix-bundle protein. Biochemistry 33, 8453-8463. https://doi.org/10.1021/bi00194a009
  38. Zsebo, K., A. Cohen, D. Murdock, T. Boone, H. Inoue, V. Chazin, D. Hines, and L. Souza. 1986. Recombinant human granulocyte colony stimulating factor: molecular and biological characterization. Immunobiology 172, 175-184. https://doi.org/10.1016/S0171-2985(86)80097-3