DOI QR코드

DOI QR Code

Anti-Obesity Effect of Crataegus Fructus Extract from Chinese Cultivation

중국산 산사자 추출물의 항비만 효과

  • Gal, Sang-Wan (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Choi, Young-Jae (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Cho, Soo-Jeong (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • 갈상완 (경남과학기술대학교 제약공학과) ;
  • 최영재 (경남과학기술대학교 제약공학과) ;
  • 조수정 (경남과학기술대학교 제약공학과)
  • Received : 2011.09.24
  • Accepted : 2011.11.10
  • Published : 2011.11.30

Abstract

This study was carried out to evaluate the antiobesity effects of Crataegus fructus in 3T3-L1 adipocytes and mice fed a high fat diet (high fat 45% cal). The inhibitory effect of methanol extract from Crataegus fructus on lipid accumulation in 3T3-L1 adipocytes was quantified using Oil red O staining. Compared with the control, lipid accumulation was significantly decreased by 10-25% with treatment with Crataegus fructus extract at a concentration of 600-2,000 ug/ml. Three-week old ICR mice (n=24) were randomly divided into four groups (T0: normal diet, T1: high fat diet, T2: high fat diet and 50 ug of Crataegus fructus extract, T3: high fat diet and 100 ug of Crataegus fructus extract) and were fed an experimental diet for 5 weeks. At the end of the experiment, body weight gain in the T1 group (3.9${\pm}$0.24 g) was higher than that in the T0 group (2.56${\pm}$0.14 g), while body weight gain in the T2 (3.02${\pm}$0.25 g) and T3 (2.58${\pm}$0.16 g) groups was significantly reduced as compared with that of the T1 group. Moreover, liver weight in the T1 (4.8${\pm}$0.17 g) and T2 (4.8${\pm}$0.16 g) groups was significantly higher than that of the T0 (4.05${\pm}$0.16 g) and T3 (4.57${\pm}$0.10 g) groups, while kidney weight was significantly lower than that of the T0 and T3 groups (p<0.05). The levels of total cholesterol and triglyceride in serum in the T2 and T3 groups were significantly decreased compared to the T1 group. These results suggest that Crataegus fructus can be used as functional materials in food and medicine.

본 연구에서는 중국산 산사자(Crataegus fructus) 추출물의 항비만 효과를 확인하기 위하여 3T3-L1 지방세포와 고지방식이(high fat 45% cal)로 비만이 유도된 ICR mouse를 이용하여 실험을 수행하였다. 3T3-L1 지방세포에 중국산 산사자 메탄올 추출물을 0-2,000 ug/ml의 농도범위로 처리하였을 때 200 ug/ml과 400 ug/ml의 농도에서는 대조구와 큰 차이를 나타내지 않았으나 600-2,000 ug/ml의 농도범위에서는 지방세포 내 중성지방이 10-25% 감소하였다(p<0.05). 실험동물인 3주령의 수컷 ICR mice (n=24)는 실험구별로 6마리씩 4군(T0: 정상식이, T1: 고지방식이, T2: 고지방식이와 산사자추출물 50 ug, T3: 고지방식이와 산사자추출물 100 ug)으로 나누어 5주 동안 시험하였으며 고지방식이군인 T1군의 증체량(3.9${\pm}$0.24 g)은 정상식이군인 T0군(2.56${\pm}$0.14 g)보다 높게 나타났으나 고지방식이군과 중국산 산사자 메탄올 추출물을 함께 급여한 T2군(3.02${\pm}$0.25 g)과 T3군(2.58${\pm}$0.16 g)의 증체량은 고지방식이만 급여한 T1군과 비교하였을 때 유의적으로 감소하는 경향을 나타내었다. 실험동물의 간 무게는 T0군보다 T1군과 T2군에서 높게 나타났으나 T3군에서는 유의적으로 감소하였으며(p<0.05) T1과 T2의 신장 무게는 T0보다 낮게 나타났으나 T3군의 신장 무게는 T0군과 유사하게 나타났다(p<0.05). 고지방식이와 중국산 산사자메탄올 추출물을 급여한 T2군과 T3군의 혈청 내 총 콜레스테롤 함량과 중성지방 함량도 고지방식이만을 급여한 T1군보다 유의적으로 낮게 나타났다.

Keywords

References

  1. Aderson, J. W., D. A. Deakins, T. L. Floore, B. M. Smith, and S. E. Whitis. 1990. Dietary fiber and coronary heart disease. Crit. Rev. Food Sci. Nutr. 29, 95-147. https://doi.org/10.1080/10408399009527518
  2. Ahn, K. S., M. S. Hahm, E. J. Park, H. K. Lee, and I. H. Kim. 1998. Corosolic acid isolated from the fruit of Crataegus pinnatifida var. psilosa is a protein kinase C inhibitor as well as a cytotoxic agent. Planta Med. 64, 468-470. https://doi.org/10.1055/s-2006-957487
  3. Ahn, I. S., K. Y. Park, and M. S. Do. 2007. Weight control mechanisms and antiobesity functional agents. J. Korean Soc. Food Sci. Nutr. 36, 503-513. https://doi.org/10.3746/jkfn.2007.36.4.503
  4. Bae, M. H. and H. H. Kim. 2003. Mechanism of Crataegi fructus extract induced endothelium-dependent vasorelaxation in rabbit carotid artery. Korean J. Herbology 18, 169-180.
  5. Cha, S. Y., J. Y. Jang, Y. H. Lee, G. Lee, H. J. Lee, K. T. Hwang, Y. Kim, W. Jun, and J. Lee. 2010. Lipolytic effect of methanol extracts from Luffa cylindrical in mature 3T3-L1 adipocytes. J. Korean Soc. Food Sci. Nutr. 39, 813-819. https://doi.org/10.3746/jkfn.2010.39.6.813
  6. Choi, O. K., Y. Kim, G. S. Cho, and C. K. Sung. 2002. Screening for antimicrobial activity from Korean plants. Korean J. Food. Nutr. 15, 300-306.
  7. Choi, S. M., M. J. Kim, Y. H. Choi, H. J. Ahn, and Y. P. Yun. 1998. Screening of the antibacterial activity of natural products against Propionibacterium acnes. Yakhak Hoeji 42, 89-94.
  8. Amani, M. D. EI-Mousallamy. 1998. Chemical investigation of the constitutive flavonoid glycosides of the leaves of Crataegus sinaica. Natural Prod. Sci. 4, 53-57.
  9. Folch, J., M. Lees, and G. H. Sloane Stanley. 1957. A simple method for isolation and purification of total lipides from animal tissue. J. Biol. Chem. 226, 497-509.
  10. Gao, C. L., J. G. Zhu, Y. P. Zhao, X. H. Chen, C. B. Ji, C. M. Zhang, C. Zhu, Z. K. Xia, Y. Z. Peng, and X. R. Guo. 2010. Mitochondrial dysfunction is induced by the overexpression of UCP4 in 3T3-L1 adipocytes. Int. J. Mol. Med. 25, 71-80.
  11. George, A. B. and A. T. Louis. 2000. Medicinal strategies in the treatment of obesity. Nature 404, 672-677.
  12. Hong, S. S., J. S. Hwang, S. A. Lee, X. H. Han, J. S. Ro, and K. S. Lee. 2002. Inhibitors of monoamine oxidase activity from the fruits of Crataegus pinnatifida Bunge. Korean J. Pharmacogn. 33, 285-290.
  13. Jeong, T. S., E. I. Hwang, H. B. Lee, E. S. Lee, Y. K. Kim, B. S. Min, K. H. Bae, S. H. Bok, and S. U. Kim. 1999. Chitin synthase II inhibitory activity of ursolic acid, isolated from Crataegus pinnatifida. Planta Med. 65, 261-263. https://doi.org/10.1055/s-2006-960474
  14. Kang, I. H., J. H. Cha, S. W. Lee, H. J. Kim, S. H. Kwon, I. H. Han, B. S. Hwang, and W. K. Whang. 2005. Isolation of anti-oxidant from domestic Crataegus pinnatifida Bunge leaves. Korean J. Parmacogn. 36, 121-128.
  15. Kim, J. S., G. D. Lee, J. H. Kwon, and H. S. Yeon. 1993. Antioxidative effectiveness of ether extract in Crataegus pinnadifida Bunge and Terminalia chebula Rets. J. Korean Agric. Chem. Soc. 36, 203-207.
  16. Kim, J. Y., J. E. Jeong, S. H. Moon, and K. Y. Park. 2010. Antiobesity effect of the Bacillus subtilis KC-3 fermented soymilk in 3T3-L1 adipocytes. J. Korean Soc. Food Sci. Nutr. 39, 1126-1131. https://doi.org/10.3746/jkfn.2010.39.8.1126
  17. Kim, J. S., G. D. Lee, J. H. Kwon, and H. S. Yeon. 1993. Identification of phenolic antioxidative components in Crataegus pinnadifida bunge. J. Korean Agric. Chem. Soc. 36, 154-157.
  18. Kopelman, P. G. 2000. Obesity as a medical problem. Nature 404, 635-643.
  19. Lee, H. J. and M. S. Choi. 1999. Measurement of inhibitory activities on 3- hydroxy-3-methylglutaryl CoA reductase and acyl-CoA: cholesterol acyltransferase by various plant extracts in vitro. J. Korean Soc. Food Sci. Nutr. 28, 958-962.
  20. Min, B. S., H. J. Jung, J. S. Lee, Y. H. Kim, S. H. Bok, C. M. Ma, N, Nakamura, M. Hattori, and K. Bae. 1999. Inhibitory effect of triterpenes from Crataegus pinatifida on HIV-I protease. Planta Med. 65, 374-375. https://doi.org/10.1055/s-2006-960792
  21. Min, B. S., Y. H. Kim, S. M. Lee, and K. Bae. 2000. Cytotoxic triterpenes from Crataegus pinnadifida. Arch. Pharm. Res. 23, 155-158. https://doi.org/10.1007/BF02975505
  22. Nasa, Y., H. Hashizume, A. N. Hoque, and Y. Abiko. 1993. Protective effect of crataegus extract on the cardiac mechanical dysfunction in isolated perfused working rat heart. Arzneimittelforschung 43, 945-949.
  23. Park, S. W., C. S. Yook, and H. K. Lee. 1994. Chemical components from the fruits of Crataegus pinnadifida var psilosa. Kor. J. Pharmacogn. 25, 328-335.
  24. Rhee, S. J., K. R. Kim, H. T. Kim, and J. H. Hong. 2007. Eeffects of catechin on lipid composition and adipose tissue in obese rats fed high fat diet. J. Korean Soc. Food Sci. Nutr. 36, 540-547. https://doi.org/10.3746/jkfn.2007.36.5.540
  25. Kim, J. C. and S. A. Kang. 2001. Effect of high fat and high carbohydrate diet on serum leptin and lipid concentration in rats. Korean J. Nutr. 34, 123-131.
  26. Seo, B. I. 2005. Preventive effects of water extracts from on Crataegi frutus on hyperlipiderma and liver damage induced by alcohol. Korean J. Herbology 20, 35-43.
  27. Shin, H. M., D. H. Shin, and G. W. Kim. 1994. Antioxidant effects and roles of endogenous sulfhydryls in the gastric mucous protection of Crataegus cuneata. J. Korean Oriental Medical Physiology 15, 127-135.
  28. Shon, M. Y. 2007. Antioxidant and anticancer activities of Poria cocos and Machilus thunbergii fermented with mycelia mushroom. Food Indus. Nutr. 12, 51-57.
  29. Spiegelman, B. M. and S. Flier. 1996. Adipogenesis and obesity; rounding out the big picture. Cell 87, 377-389. https://doi.org/10.1016/S0092-8674(00)81359-8
  30. Sun, J. Y., S. B. Yang, H. X. Xie, G. H. Li, and H. X. Qiu. Studies in chemical constituents from fruit of Crataegus pinnadifida. Chinese Traditional and Herbal Drugs 33, 483-486.
  31. Visscher, T. L. 2001. The public health impact of obesity. Annu. Rev. Publ. Health 22, 355-375. https://doi.org/10.1146/annurev.publhealth.22.1.355
  32. Zhang, P. C. and S. X. Xu. 2001. Flavonoid ketohexosefuranosides from the leaves of Crataegus pinnatifida Bge var. major N. E. Br. Phytochemistry 57, 1249-1253. https://doi.org/10.1016/S0031-9422(01)00170-4
  33. Zhang, P. C. and S. X. Xu. 2002. Two new C-glucoside flavonoids from leaves of Crataegus pinnatifida Bge var. major N. E. Br. Chinese Chem. Lett. 57, 1249-1253.