DOI QR코드

DOI QR Code

The therapeutic effect of Drynariae Rhizoma in a mouse model of allergic asthma

천식 모델 마우스에서 골쇄보의 항천식 효과

  • Kim, Seung-Taik (Department of Herbology, College of Oriental Medicine, Sangji University) ;
  • Lee, Jang-Cheon (Division of Pharmacology and Basic Korean Medicine, School of Korean Medicine, Pusan National University) ;
  • Lee, Young-Cheol (Department of Herbology, College of Oriental Medicine, Sangji University)
  • 김승택 (상지대학교 한의과대학 본초학교실) ;
  • 이장천 (부산대학교 한의학전문대학원) ;
  • 이영철 (상지대학교 한의과대학 본초학교실)
  • Received : 2011.11.09
  • Accepted : 2011.12.16
  • Published : 2011.12.30

Abstract

Objective : Allergic asthma is a chronic airway disease that affects millions of people in the developed world. The disease is characterized by concurring airway inflammation, Th2 cytokine production, increased mucus secretion, airway hyperresponsiveness (AHR) to inhaled antigen, and pulmonary fibrosis. To investigate the therapeutic and anti-asthmatic effects of Drynariae Rhizoma (DR), we examined the influence of DR on the development of pulmonary eosinophilic inflammation and airway hyperresponsiveness in a mouse model of allergic asthma. Methods : In this study, BALB/c mice were systemically sensitized to ovalbumin (OVA) followed intratracheally, intraperitoneally, and by aerosol allergen challenges. We investigated the effect of DR on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production and OVA specific IgE production in a mouse model of asthma. Results : In asthmatic mice, we found that DR.treated groups had suppressed eosinophil infiltration, allergic airway inflammation and AHR by suppressing the production of IL-5, IL-13 and OVA specific IgE. Conclusions : Our data suggest that the therapeutic mechanism by which DR effectively treats asthma is based on reductions of Th2 cytokines (IL-5), eotaxin, OVA-specific IgE production and eosinophil infiltration.

Keywords

References

  1. Kay AB. Asthma and inflammation. J. Allergy. Clin. Immunol. 1991 ; 87 : 893-910. https://doi.org/10.1016/0091-6749(91)90408-G
  2. Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med. 2000 ; 161 : 1720-45. https://doi.org/10.1164/ajrccm.161.5.9903102
  3. Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J. Exp. Med. 1988 ; 167 : 219-24. https://doi.org/10.1084/jem.167.1.219
  4. Umetsu DT, McIntire JJ, Akbari O, Macaubas C, DeKruyff RH. Asthma : an epidemic of dysregulated immunity. Nat. Immunol. 2002 ; 3 : 715-720. https://doi.org/10.1038/ni0802-715
  5. Wegmann M. Th2 cells as targets for therapeutic intervention in allergic bronchial asthma. Expert Rev. Mol. Diagn. 2009 ; 9 : 85-100. 411 https://doi.org/10.1586/14737159.9.1.85
  6. Sanderson CJ, Warren DJ, Strath M. Identification of a liymphokine that stimulates eosinophil differentiation in vitro. Its relationship to interleukin-3, and functional properties of eosinophils produced in cultures. J. Exp. Med. 1985 ; 162 : 60.
  7. Nakajima H, Hirose K. Role of IL-23 and Th17 Cells in Airway Inflammation in Asthma. Immune Netw. 2010 ; 10 : 1-4. https://doi.org/10.4110/in.2010.10.1.1
  8. Shi XC. Chinese-English Terminology of Traditional Chinese Medicine. Hunan Science Publishing Co., China. 1983 : 71-98.
  9. Park SM, Lee JH, Lee KC, Yang HW, Lee BC, Lee JH, Jeong JG, Seo BI, Kang YS, Kim SS, Hwang DR, Kim DH, Shin MK, Song HJ. Effect of Drynariae Rhizoma on Cultured Mouse Fibroblast Injured by Streptomycin. The Korea Journal of Herbology. 2003 ; 18(1) : 7-13.
  10. Liang YH, Ye M, Zhang LZ, Li HF, Han J, Wang BR, Guo DA. Two new phenolic acids from Drynariae Rhizoma. Acta Pharm. Sin. 2010 ; 45 : 874-878.
  11. Liang YH, Wei W, Yu SW, Ye M, He XH, Gong NB, Lu Y, Ikhlas AK, Guo DA. A new chiratane type triterpenoid from the rhizomes of Drynaria fortunei. Fitoterapia. 2010 ; 81 : 988-991. https://doi.org/10.1016/j.fitote.2010.06.013
  12. Liang YH, Ye M, Han J, Wang BR, Guo DA. Lignans and flavonoids from rhizome of Drynaria fortunei. Chin. Trad. Herb. Drugs. 2011 ; 42 : 25-30.
  13. Kim SH, Kim BK, Lee YC. Antiasthmatic effects of hesperidin, a potential Th2 cytokine antagonist, in a mouse model of allergic asthma. Mediators Inflamm. 2011 ; 2011 : 485402.
  14. Bharadwaj A, Agrawal DK. Immunomodulation in asthma : a distant dream or a close reality? Int. Immunopharmacol. 2004 ; 4 : 495-511. https://doi.org/10.1016/j.intimp.2004.02.001
  15. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P, et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 1990 ; 323 : 1033. https://doi.org/10.1056/NEJM199010113231505
  16. Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH, Gerard C. A Critical Role for Eosinophils in Allergic Airways Remodeling. Science. 2004 ; 305(5691) : 1776-1779. https://doi.org/10.1126/science.1100283
  17. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2008 ; 8(3) : 183-192. https://doi.org/10.1038/nri2254
  18. Tomkinson A, Duez C, Cieslewicz G, Pratt JC, Joetham A, Shanafelt MC, Gundel R, Gelfand EW. A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. Journal of Immunology. 2001 ; 166(9) : 5792-5800. https://doi.org/10.4049/jimmunol.166.9.5792
  19. Lee NA, Gelfand EW, Lee JJ. Pulmonary T cells and eosinophils : coconspirators or independent triggers of allergic respiratory pathology? J. Allergy Clin. Immunol. 2001 ; 107 : 945-57. https://doi.org/10.1067/mai.2001.116002
  20. Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N, et al. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J. Exp. Med. 1988 ; 167 : 43-56. https://doi.org/10.1084/jem.167.1.43
  21. Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J. Exp. Med. 1988 ; 167 : 219-24. https://doi.org/10.1084/jem.167.1.219
  22. Sanderson CJ. Interleukin-5, eosinophils, and disease. Blood. 1992 ; 79 : 3101-9.
  23. Rothenberg ME, Hogan SP. The eosinophil. Ann. Rev. Immunol. 2006 ; 24 : 147-74. https://doi.org/10.1146/annurev.immunol.24.021605.090720
  24. Gleich GJ, Frigas E, Loegering DA, Wassom DL, Steinmuller D. Cytotoxic properties of the eosinophil major basic protein. J. Immunol. 1979 ; 123 : 2925-2927.
  25. Humbles AA, Conroy DM, Marleau S, Rankin SM, Palframan RT, Proudfoot AE, Wells TN, Li D, Jeffery PK, Griffiths-Johnson DA, et al. Kinetics of eotaxin generation and its relationship to eosinophil accumulation in allergic airways diseas e : analysis in a guinea pig model in vivo. J. Exp. Med. 1997 ; 186 : 601. https://doi.org/10.1084/jem.186.4.601
  26. Kitamura M, Nakajima T, Imai T, Harada S, Combadiere C, Tiffany HL, Murphy PM, Yoshie O. Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. The journal of biological chemistry. 1996 ; 271 : 7725-7730. https://doi.org/10.1074/jbc.271.13.7725
  27. Umland SP, Wan Y, Shortall J, Shah H, Jakway J, Garlisi CG, Tian F, EganRW, Billah MM. Receptor reserve analysis of the human CCR3 receptor in eosinophils and CCR3-transfected cells. Journal of leukocyte biology. 2000 ; 67(3) : 441-447. https://doi.org/10.1002/jlb.67.3.441