DOI QR코드

DOI QR Code

Height-DBH Growth Models of Major Tree Species in Chungcheong Province

충청지역 주요 수종의 수고-흉고직경 생장모델에 관한 연구

  • Seo, Yeon Ok (Department of Forest Resources, Kongju National University) ;
  • Lee, Young Jin (Department of Forest Resources, Kongju National University) ;
  • Rho, Dai Kyun (National Forest Resource Inventory Center, National Forest Cooperatives Federation) ;
  • Kim, Sung Ho (Division of Forest Resources Information, Korea Forest Research Institute) ;
  • Choi, Jung Kee (Division of Forest Management, Kangwon National University) ;
  • Lee, Woo Kyun (Division of Environmental Science and Ecological Engineering, Korea University)
  • Received : 2010.10.18
  • Accepted : 2010.11.03
  • Published : 2011.03.31

Abstract

Six commonly used non-linear growth functions were fitted to individual tree height-dbh data of eight major tree species measured by the $5^{th}$ National Forest Inventory in Chungcheong province. A total of 2,681 trees were collected from permanent sample plots across Chungcheong province. The available data for each species were randomly splitted into two sets: the majority (90%) was used to estimate model parameters and the remaining data (10%) were reserved to validate the models. The performance of the models was compared and evaluated by $R^2$, RMSE, mean difference (MD), absolute mean difference (AMD) and mean difference(MD) for diameter classes. The combined data (100%) were used for final model fitting. The results showed that these six sigmoidal models were able to capture the height-diameter relationships and fit the data equally well, but produced different asymptote estimates. Sigmoidal growth models such as Chapman-Richards, Weibull functions provided the most satisfactory height predictions. The effect of model performance on stem volume estimation was also investigated. Tree volumes of different species were computed by the Forest Resources Evaluation and Prediction Program using observed range of diameter and the predicted tree total height from the six models. For trees with diameter less than 30 cm, the six height-dbh models produced very similar results for all species, while more differentiation among the models was observed for large-sized trees.

본 연구는 5차 국가산림자원조사(National Forest Inventory, NFI) 표본점 자료를 이용하여 충청도 지역에 분포하는 주요 수종에 대한 수고-흉고직경 생장모델을 개발하고자 하였다. 충청도 지역 고정표본지 내에서 수고와 흉고직경이 측정된 주요 수종의 총 임목 본수는 2,681본이었으며, 무작위로 생장모델의 개발을 위해 90% 자료와 모델 타당성 검정을 위해 10% 자료로 나누어서 분석하였고, 본 연구에서 제시된 최종모형의 추정된 계수는 100% 자료를 이용하였다. 8개 주요 수종에 대한 생장모델들의 적합성 검정은 결정계수($R^2$), 추정치의 오차인 평균제곱근오차(RMSE), 평균편의(MD), 절대평균편의(AMD)와 직경급별로 평균편의(MD)를 비교 분석하였다. 본 연구 결과에 의하면, 6개 주요 생장식의 결정계수는 모두 94% 이상의 높은 설명력을 나타냈으며, 특히 C-R 생장모델과 Weibull 생장모델은 다른 모델에 비해 좋은 결과를 나타냈다. 직경급 30 cm 이하에서는 소나무, 리기다소나무, 굴참나무, 신갈나무가 상대적으로 가장 작은 평균편의를 나타낸 반면, 직경급 30 cm 이상에서는 신갈나무, 상수리나무, 졸참나무가 큰 평균편의를 나타냈다. 또한 본 연구의 결과로 제시된 6개 주요 생장식에서 추정한 수고를 임목자원평가 프로그램에 적용하여 간재적을 분석한 결과, 직경급 30 cm까지는 큰 차이를 보이지 않지만, 30 cm 이상인 대경목의 경우 추정된 간재적은 큰 차이를 보이므로, 생장모델 선정에 주의를 기울여야 한다.

Keywords

References

  1. 국립산림과학원. 2008. 제 5차 국가산림자원조사 -현지 조사 매뉴얼-. pp. 65.
  2. 박명숙, 정연관. 1999. 곰솔임분의 직경 및 수고생장 추정에 관한 연구. 한국임학회지. 88(1): 47-54.
  3. 산림청. 2010. 산림청홈페이지. http://www.forest.go.kr/
  4. 산림청. 2009. 임목자원평가.예측 프로그램.
  5. 손영모, 이경학, 정영교. 1997. 비선형 생장함수를 이용한 임분생장 추정. 한국임학회지. 86(2): 135-145.
  6. 이우균. 1996. 강원도지역 소나무의 임분 및 일반 수고 흉고직경곡선 모델. 산림경제연구. pp. 66-78.
  7. Arney, J.D. 1985. A modeling strategy for the growth projection of managed stands. Canadian Journal of Forest Research. 15: 511-518. https://doi.org/10.1139/x85-084
  8. Avery, T.E. and Burkhart, H.E. 2002. Forest Measurements. 5th edition McGraw-Hill Inc., New York. pp. 406.
  9. Curtis, R.O. 1967. Height-diameter and height-diameterage equations for second-growth Douglas-fir. Forest Science. 13: 365-375.
  10. Curtis, R.O., Clendenen, G.W. and Demars, D.J. 1981. A new stand simulator for coast Douglas fir DFSIM user's guide. Forest Service General Technical Report. PNW-128.
  11. Huang, S., Price, D. and Titus, S.J. 2000. Development of ecoregion-based height-diameter models for white spruce in Boreal Forests. Forest Ecology and Management. 129: 125-141. https://doi.org/10.1016/S0378-1127(99)00151-6
  12. Huang, S. and Titus, S.J. 1993. An index of site productivity for uneven-aged and mixed-species stands. Canadian Journal of Forest Research. 23: 558-562. https://doi.org/10.1139/x93-074
  13. Huang, S. and Titus, S.J. 1994. An age-independent individual tree height prediction model for Boreal spruceaspen stands in Alberta. Canadian Journal of Forest Research. 24: 1295-1301. https://doi.org/10.1139/x94-169
  14. Lee, Y.J., Coble, D.W., Kim, S.H., Lee, W.K. and Choi, J.K. 2009. A Mixed-effects height-diameter model for Pinus densiflora trees in Gangwon Province of Korea. Journal of Korean Forest Society. 98(2): 178-182.
  15. Larsen, D.R. and Hann, D.W. 1987. Height-diameter equations for seventeen tree species in southwest Oregon. Oregon State Univ. Forest Resources Laboratory. pp. 4.
  16. Moore, J.A., Zhang, L. and Stuck, D. 1996. Height-diameter equation for ten tree species in the Inland Northwest. Western Journal of Applied Forestry 11: 132-137.
  17. Peng, C.H., Zhang, L. and Liu, J. 2001a. Developing and validation nonlinear height-diameter models for major tree species of Ontario's Boreal Forests. Northern Journal of Applied Forestry. 18(3): 87-94.
  18. Peng, C.H., Zhang, L., Huang, S., Zhou, X., Parton, J. and Woods, M. 2001b. Developing ecoregion-based heightdiameter models for jack pine and black spruce on Ontario. Ministry of Natural Resources, Ontario Forest Research Institute, OFRI-Report. 159. pp. 10.
  19. SAS. Institute Inc., 2004. SAS/STAT 9.1 User's Guide. SAS Institute Inc., Cary. NC.
  20. Vanclay, J.K. 1994. Modelling forest growth and yieldapplication to mixed tropical forests. CAB International, Wallingford, U.K.
  21. Wang, C.H. and Hann, D.W. 1988. Height-diameter equations for sixteen tree species in the central western Willamette valley of Oregon. Oregon State Univ. Forest Resources Laboratory. pp. 51.
  22. Zhang, L. 1997. Cross-validation of non-linear growth functions for modelling tree height-diameter relationships. Annals of Botany. 79: 251-257. https://doi.org/10.1006/anbo.1996.0334