Acknowledgement
Supported by : Howon University
References
- D. M. Amini and A. Bozorgnia, Complete convergence for negatively dependent random variables, J. Appl. Math. Stoch. Anal. 16 (2003), 121-126. https://doi.org/10.1155/S104895330300008X
- N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Commun. Statist. Theor. Math. 10 (1981), 307-337. https://doi.org/10.1080/03610928108828041
- D. Kh. Fuk and S. V. Nagev, Probability inequalities for sums of independent random variables, Theor. Probab. Appl. 16 (1971), 643-660. https://doi.org/10.1137/1116071
- K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Math. Statist. 11 (1983), 286-295. https://doi.org/10.1214/aos/1176346079
- M. H. Ko, and T. S. Kim, Almost sure convergence for weighted sums of negatively orthant dependent random variables, J. Kor. Math. Soc. 42 (2005), 949-957. https://doi.org/10.4134/JKMS.2005.42.5.949
- M. H. Ko, K. H. Han, and T. S. Kim, Strong laws of large numbers for weighted sums of negatively dependent random variables, J. Kor. Math. Soc. 43 (2006), 1325-1338. https://doi.org/10.4134/JKMS.2006.43.6.1325
- D. Landers and L. Rogge, Laws of large numbers for uncorrelated Cesaro uniformly integrable random variables, Sankhya, 59(A) (1997), 301-310.
- E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153. https://doi.org/10.1214/aoms/1177699260
- R. L. Taylor, R. F. Patterson, and A. Bozorginia, Weak laws of large numbers for arrays of rowwise negatively dependent random variables, J. Appl. Math. Stoch. Anal. 14 (2001), 227-236. https://doi.org/10.1155/S1048953301000181
- R. L. Taylor, R. F. Patterson, and A.Bozorginia, A strong law of large numbers for arrays of rowwise negatively dependent random variables, Stoch. Anal. Appl. 20 (2002), 643-656. https://doi.org/10.1081/SAP-120004118
- A. Volodin, M. O. Cabrera, and T. C. Hu, Convergence rate of the dependent bootstrapped means, Theor. Probab. Appl. 50 (2006), 337-346. https://doi.org/10.1137/S0040585X97981688
- X. Wang, S. Hu, W. Yang, and X. Ling, Exponential inequalities and inverse moment for NOD sequence, Statist. Probab. Lett. 80 (2010), 452-461. https://doi.org/10.1016/j.spl.2009.11.023