DOI QR코드

DOI QR Code

THE BAUM-KATZ LAW OF LARGE NUMBERS FOR NEGATIVELY ORTHANT DEPENDENT RANDOM VARIABLES

  • Received : 2010.12.20
  • Accepted : 2011.02.15
  • Published : 2011.03.30

Abstract

In this paper the Baum-Katz law of large numbers for negatively orthant dependent random variables is studied. The complete convergence of negatively orthant dependent random variables under some conditions of uniform integrablity is also obtained.

Keywords

Acknowledgement

Supported by : Howon University

References

  1. D. M. Amini and A. Bozorgnia, Complete convergence for negatively dependent random variables, J. Appl. Math. Stoch. Anal. 16 (2003), 121-126. https://doi.org/10.1155/S104895330300008X
  2. N. Ebrahimi and M. Ghosh, Multivariate negative dependence, Commun. Statist. Theor. Math. 10 (1981), 307-337. https://doi.org/10.1080/03610928108828041
  3. D. Kh. Fuk and S. V. Nagev, Probability inequalities for sums of independent random variables, Theor. Probab. Appl. 16 (1971), 643-660. https://doi.org/10.1137/1116071
  4. K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Math. Statist. 11 (1983), 286-295. https://doi.org/10.1214/aos/1176346079
  5. M. H. Ko, and T. S. Kim, Almost sure convergence for weighted sums of negatively orthant dependent random variables, J. Kor. Math. Soc. 42 (2005), 949-957. https://doi.org/10.4134/JKMS.2005.42.5.949
  6. M. H. Ko, K. H. Han, and T. S. Kim, Strong laws of large numbers for weighted sums of negatively dependent random variables, J. Kor. Math. Soc. 43 (2006), 1325-1338. https://doi.org/10.4134/JKMS.2006.43.6.1325
  7. D. Landers and L. Rogge, Laws of large numbers for uncorrelated Cesaro uniformly integrable random variables, Sankhya, 59(A) (1997), 301-310.
  8. E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153. https://doi.org/10.1214/aoms/1177699260
  9. R. L. Taylor, R. F. Patterson, and A. Bozorginia, Weak laws of large numbers for arrays of rowwise negatively dependent random variables, J. Appl. Math. Stoch. Anal. 14 (2001), 227-236. https://doi.org/10.1155/S1048953301000181
  10. R. L. Taylor, R. F. Patterson, and A.Bozorginia, A strong law of large numbers for arrays of rowwise negatively dependent random variables, Stoch. Anal. Appl. 20 (2002), 643-656. https://doi.org/10.1081/SAP-120004118
  11. A. Volodin, M. O. Cabrera, and T. C. Hu, Convergence rate of the dependent bootstrapped means, Theor. Probab. Appl. 50 (2006), 337-346. https://doi.org/10.1137/S0040585X97981688
  12. X. Wang, S. Hu, W. Yang, and X. Ling, Exponential inequalities and inverse moment for NOD sequence, Statist. Probab. Lett. 80 (2010), 452-461. https://doi.org/10.1016/j.spl.2009.11.023