DOI QR코드

DOI QR Code

The Optimal Pulse Oxygen Saturation in Very Low Birth Weight or Very Preterm Infants

극소 저체중 출생아에서 경피적 산소포화도의 적정 범위

  • You, Sun-Young (Department of Pediatrics, Graduate School of Medicine, Chungnam National University) ;
  • Kang, Hye-Jin (Department of Pediatrics, Graduate School of Medicine, Chungnam National University) ;
  • Kim, Min-Jung (Department of Pediatrics, Chungnam National University Hospital) ;
  • Chang, Mea-Young (Department of Pediatrics, Graduate School of Medicine, Chungnam National University)
  • 유선영 (충남대학교 의학전문대학원 소아과학교실) ;
  • 강혜진 (충남대학교 의학전문대학원 소아과학교실) ;
  • 김민정 (충남대학교병원 소아청소년과) ;
  • 장미영 (충남대학교 의학전문대학원 소아과학교실)
  • Published : 2011.11.30

Abstract

Purpose: To determine the effect of changing practice guidelines designed to avoid hyperoxia or hypoxia in very low birth weight or very preterm infants. Methods: We analyzed a database of <1,500 g birth weight or <32 weeks of gestation infants who were born and admitted to the neonatal intensive care unit of Chungnam National University Hospital from January 2007 to July 2010. First, we defined the relationship between arterial partial pressure of oxygen ($PaO_2$) and pulse oxygen saturation ($SpO_2$). When we evaluated 96 pairs of $PaO_2$ and $SpO_2$ measurements, oxygen saturation was 90-94% at a $PaO_2$ of 43-79 mmHg on the oxyhemoglobin dissociation curve, according to pulse oximetry. Based on this observation, a change in practice was instituted in August 2008 with the objective of avoiding hypoxia and hyperoxia in preterm infants with targeting a $SpO_2$ 90-94% (period II). Before the change in practice, high alarms for $SpO_2$ were set at 100% and low alarms at 95% (period I). Results: Sixty-eight infants the met enrollment criteria and 38 (56%) were born during period II, after the change in $SpO_2$ targets. Demographic characteristics, except gender, were similar between the infants born in both periods. After correcting for the effect of confounding factors, the rates for mortality, severe retinopathy of prematurity, and IVH attended to be lower than those for infants in period II. No difference in the rate of patent ductus arteriosus needed to treat was observed. Conclusion: A change in the practice guidelines aimed at avoiding low oxygen saturation and hyperoxia did not increase neonatal complication rates and showed promising results, suggesting decreased mortality and improvements in short term morbidity. It is still unclear what range of oxygen saturation is appropriate for very preterm infants but the more careful saturation targeting guideline should be considered to prevent hypoxemic events and hyperoxia.

목적: 조산아는 산화 방지 시스템이 미성숙하여 과산소증 및 저산소증에 노출되면 이차적으로 중추 신경계, 호흡계, 혈액계 등 다른 체내 기관에 손상이 올 수 있다. 저자들은 1,500 g 미만 또는 32주 미만의 조산아에서 동맥혈 산소 분압을 50-70mmHg근처로 유지하기 위하여 경피적 산소 포화도를 90-94%로 유지하여 과산소증 및 저산소증을 회피하는 전략 하에 치료하였던 군(T)과 고식적인 경피적 산소 포화도 감시를 하였던 군(C)에서 사망률, 입원 기간 및 이환율에 대해 비교하였다. 방법: 충남대학교병원 신생아 집중치료실에 입원하였던 신생아 중 1,500 g 미만 또는 32주 미만의 조산아를 대상으로 하였다. 2008년 8월부터 2010년 7월까지 경피적 산소포화도를 90-94%으로 유지하였던 조산아들을 T군으로 하였고 2007년 1월에서 2008년 8월까지 경피적 산소 포화도 감시의 지침 없이 고식적인 관리를 하였던 조산아들을 C군으로 하였다. 양 군 간에 입원 중 사망률, 입원기간, 만성폐질환으로 이행 및 치료 여부, 괴사성 장염, 미숙아 망막증, 뇌실 내 출혈, 동맥관 개존증 등을 후향적으로 비교하였다. 결과: 양 군의 기본 특징은 성별 외에 유의한 차이가 없었다. 사망률은 T군에서 C 군 보다 적은 경향은 보였으나 통계적 유의성은 없었다(5.3% vs. 16.7%, P=0.127). 두 군간에 입원기간, 만성폐질환, 산소 사용 기간과 괴사성 장염의 빈도는 차이가 없었다. ICROP 제 3기 이상의 중증 미숙아 망막증은 T군이 C군 보다 적은 경향을 보였으며(2.6% vs. 10%, P=0.203), 뇌실 내 출혈의 발생 빈도는 T군에서 C군 보다 낮은 경향을 보였다(18.4% vs. 40.0%, P=0.051). 치료가 필요하였던 동맥관 개존증의 빈도는 양 군에서 차이가 없었다. 결론: 극소 저체중 출생아 또는 극소 조산아에서 경피적 산소포화도를 90-94%으로 유지하는 전략은 과산소증 및 잠재적인 저산소증에의 노출을 최소화함으로서 합병증의 증가 없이 단기적 예후 개선에 기여할 수 있을 것이다.

Keywords

References

  1. Kinsey VE, Arnold HJ, Kalina RE, Stern L, Stahlman M, Odell G, et al. PaO2 levels and retrolental fibroplasia: a report of the cooperative study. Pediatrics 1977;60:655-68.
  2. Flynn JT, Bancalari E, Snyder ES, Goldberg RN, Feuer W, Cassady J, et al. A cohort study of transcutaneous oxygen tension and the incidence and severity of retinopathy of prematurity. N Engl J Med 1992;326:1050-4. https://doi.org/10.1056/NEJM199204163261603
  3. Silvers KM, Gibson AT, Russell JM, Powers HJ. Antioxidant activity, packed cell transfusions, and outcome in premature infants. Arch Dis Child Fetal Neonatal Ed 1998;78:F214-9. https://doi.org/10.1136/fn.78.3.F214
  4. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;163:1723-9. https://doi.org/10.1164/ajrccm.163.7.2011060
  5. Haynes RL, Folkerth RD, Keefe RJ, Sung I, Swzeda LI, Rosenberg PA, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 2003;62:441-50.
  6. Collins MP, Lorenz JM, Jetton JR, Paneth N. Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res 2001;50:712-9. https://doi.org/10.1203/00006450-200112000-00014
  7. Wright KW, Sami D, Thompson L, Ramanathan R, Joseph R, Farzavandi S. A physiologic reduced oxygen protocol decreases the incidence of threshold retinopathy of prematurity. Trans Am Ophthalmol Soc 2006;104:78-84.
  8. Chow LC, Wright KW, Sola A; CSMC Oxygen Administration Study Group. Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics 2003;111:339-45. https://doi.org/10.1542/peds.111.2.339
  9. Deulofeut R, Critz A, Adams-Chapman I, Sola A. Avoiding hyperoxia in infants < or = 1250 g is associated with improved shortand long-term outcomes. J Perinatol 2006;26:700-5. https://doi.org/10.1038/sj.jp.7211608
  10. Tin W, Milligan DW, Pennefather P, Hey E. Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed 2001;84:F106-10. https://doi.org/10.1136/fn.84.2.F106
  11. Noori S, Patel D, Friedlich P, Siassi B, Seri I, Ramanathan R. Effects of low oxygen saturation limits on the ductus arteriosus in extremely low birth weight infants. J Perinatol 2009;29:553-7. https://doi.org/10.1038/jp.2009.60
  12. Tokuhiro Y, Yoshida T, Nakabayashi Y, Nakauchi S, Nakagawa Y, Kihara M, et al. Reduced oxygen protocol decreases the incidence of threshold retinopathy of prematurity in infants of <33 weeks gestation. Pediatr Int 2009;51:804-6. https://doi.org/10.1111/j.1442-200X.2009.02856.x
  13. Tarnow-Mordi WO, Darlow B, Doyle L. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 2010;363: 1285-6. https://doi.org/10.1056/NEJMc1007912
  14. Laptook AR, Salhab W, Allen J, Saha S, Walsh M. Pulse oximetry in very low birth weight infants: can oxygen saturation be maintained in the desired range? J Perinatol 2006;26:337-41. https://doi.org/10.1038/sj.jp.7211500
  15. Lee HJ, Choi JH, Min SJ, Kim DH, Kim HS. Comparison of the clinical performance between two pulse oximeters in NICU: Nellcor N-$595^{(R)}$ versus Masimo $SET^{(R)}$. J Korean Soc Neonatol 2010;17:245-9. https://doi.org/10.5385/jksn.2010.17.2.245
  16. Castillo A, Sola A, Baquero H, Neira F, Alvis R, Deulofeut R, et al. Pulse oxygen saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: is 85% to 93% an acceptable range? Pediatrics 2008;121:882-9. https://doi.org/10.1542/peds.2007-0117
  17. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 2010;362:1959-69. https://doi.org/10.1056/NEJMoa0911781
  18. Finer N, Leone T. Oxygen saturation monitoring for the preterm infant: the evidence basis for current practice. Pediatr Res 2009;65: 375-80. https://doi.org/10.1203/PDR.0b013e318199386a
  19. Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics 2005;116:1353-60. https://doi.org/10.1542/peds.2005-0249
  20. An international classification of retinopathy of prematurity. The Committee for the Classification of Retinopathy of Prematurity. Arch Ophthalmol 1984;102:1130-4. https://doi.org/10.1001/archopht.1984.01040030908011
  21. Volpe JJ. Neurology of the newborn. 5th ed. Philadelphia : Saunders, 2008:541.
  22. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg 1978;187:1-7. https://doi.org/10.1097/00000658-197801000-00001
  23. Wilson JL, Long SB, Howard PJ. Respiration of premature infants: response to variations of oxygen and to increased carbon dioxide in inspired air. Am J Dis Child 1942;63:1080-5.
  24. Campbell K. Intensive oxygen therapy as a possible cause of retrolental fibroplasia; a clinical approach. Med J Aust 1951;2:48-50.
  25. Gressens P, Rogido M, Paindaveine B, Sola A. The impact of neonatal intensive care practices on the developing brain. J Pediatr 2002;140: 646-53. https://doi.org/10.1067/mpd.2002.123214
  26. Saugstad OD. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol 2003;8:39-49. https://doi.org/10.1016/S1084-2756(02)00194-X
  27. Chandel NS, Budinger GR. The cellular basis for diverse responses to oxygen. Free Radic Biol Med 2007;42:165-74. https://doi.org/10.1016/j.freeradbiomed.2006.10.048
  28. Chang HY, Park EH, Oh CH, Park MS, Namgung R, Park KI, et al. Changes in pulmonary interleukin-6 and pulmonary pathology in neonatal mice after exposure to hyperoxia and ascorbate treatment. J Korean Soc Neonatol 2001;8:103-9.
  29. Smith LE. Pathogenesis of retinopathy of prematurity. Semin Neonatol 2003;8:469-73. https://doi.org/10.1016/S1084-2756(03)00119-2
  30. Gyllensten L. Influence of oxygen exposure on the differentiation of the cerebral cortex of growing mice. Acta Morphol Neerl Scand 1959;2:311-30.
  31. Tin W. Optimal oxygen saturation for preterm babies. Do we really know? Biol Neonate 2004;85:319-25. https://doi.org/10.1159/000078173
  32. Chen ML, Guo L, Smith LE, Dammann CE, Dammann O. High or low oxygen saturation and severe retinopathy of prematurity: a meta-analysis. Pediatrics 2010;125:e1483-92. https://doi.org/10.1542/peds.2009-2218
  33. Saugstad OD, Aune D. In search of the optimal oxygen saturation for extremely low birth weight infants: a systematic review and metaanalysis. Neonatology 2011;100:1-8. https://doi.org/10.1159/000322001
  34. Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 1996;76:839-85.
  35. Warner BB, Stuart LA, Papes RA, Wispé JR. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol 1998;275:L110-7.
  36. American Academy of Pediatrics, American College of Obstetricians and Gynecologists. Guidelines for perinatal care. 5th ed. Chicago : American Academy of Pediatrics, 2002:246.
  37. Askie LM, Henderson-Smart DJ, Ko H. Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants. Cochrane Database Syst Rev 2009;(1):CD001077.
  38. Salyer JW. Neonatal and pediatric pulse oximetry. Respir Care 2003;48:386-96.
  39. Hagadorn JI, Furey AM, Nghiem TH, Schmid CH, Phelps DL, Pillers DA, et al. Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks' gestation: the AVIOx study. Pediatrics 2006;118:1574-82. https://doi.org/10.1542/peds.2005-0413
  40. Claure N, Bancalari E, D'Ugard C, Nelin L, Stein M, Ramanathan R, et al. Multicenter crossover study of automated control of inspired oxygen in ventilated preterm infants. Pediatrics 2011;127:e76-83. https://doi.org/10.1542/peds.2010-0939