DOI QR코드

DOI QR Code

Analyses of Clinical Characteristics and Hematologic Studies of Confirmed Infants by Extended Spectrum $\beta$-lactamase Producing Escherichia coli or Klebsiella pneumonia in Neonatal Intensive Care Unit

단일병원 신생아 중환자실에서 Extended Spectrum $\beta$-lactamase 를 생성하는 Escherichia coli 혹은 Klebsiella pneumoniae가 확인된 신생아들의 임상적 특징 및 혈액학적 검사의 분석

  • Lee, Sun-Geun (Department of Pediatrics, Inje University College of Medicine, Sanggye Paik Hospital) ;
  • Choi, Min-Hwan (Department of Pediatrics, Inje University College of Medicine, Sanggye Paik Hospital) ;
  • Shim, Gyu-Hong (Department of Pediatrics, Inje University College of Medicine, Sanggye Paik Hospital) ;
  • Chey, Myoung-Jae (Department of Pediatrics, Inje University College of Medicine, Sanggye Paik Hospital)
  • 이선근 (인제대학교 상계백병원 소아청소년과학교실) ;
  • 최민환 (인제대학교 상계백병원 소아청소년과학교실) ;
  • 심규홍 (인제대학교 상계백병원 소아청소년과학교실) ;
  • 최명재 (인제대학교 상계백병원 소아청소년과학교실)
  • Published : 2011.11.30

Abstract

Purpose: Extended spectrum $\beta$-lactamase (ESBL) producing organism is an important cause of infections in the neonatal intensive care unit (NICU) since 1990s. The aim of this study is to investigate the differences of clinical characteristics and hematologic studies between neonates with ESBL-positive organism and those with ESBL-negative organism. Methods: The subjects included 48 neonates admitted to NICU at Inje University Sanggye Paik Hospital from January 2005 to September 2010, from whom a total of 58 Escherichia coli or Klebsiella pneumonia were detected. The data were categorized in 2 groups, neonates with ESBL-positive and ESBL-negative. We compared clinical characteristics and hematologic studies between two groups. Results: Of 48 neonates and 53 isolates, ESBL-positive were 18 neonates and 20 isolates. Both ESBL-positive and ESBL-negative isolates were largely found in urine, each with 10 and 23. Of 20 ESBL-positive isolates, 13 (65%) and 7 (35%) were ESBL producing Escherichia coli and Klebsiella pneumonia, respectively. ESBL-positive neonates were associated with low 1 and 5 minutes Apgar scores (P=0.002 and P=0.001, respectively), more uses of oxygen (56% vs. 27%; P=0.005), longer duration of oxygen uses (15.8${\pm}$38.43 days vs. 4.3${\pm}$12.5 days; P=0.008) and more frequent anemia (33% vs. 7%; P=0.040). Conclusion: ESBL-positive neonates may have more anemia and lower Apgar score at birth. We can consider the use of cabapenem earlier if infant with previous antibiotics is confirmed to be infected with ESBL-positive organisms.

목적: ESBL 생성 균주는 1990년대 접어들어 신생아 중환자실에서 중요한 감염증 원인균 중하나로 대두되었다. 본 연구에서는 ESBL 생성하는 E. coli 및 K. pneumoniae에 감염된 신생아들과 ESBL 음성인 E. coli 및 K. pneumoniae에 감염된 신생아들에 있어서 임상적인 특징 및 혈액학적 검사 소견 등의 차이점을 알아보고자 본 연구를 시행하였다. 방법: 2005년 1월부터 2010년 9월까지 인제대학교 상계백병원 신생아 중환자실에 입원 한 환아 중 배양 검사에서 E. coli 또는 K. pneumoniae가 분리된 48명, 55균주를 대상으로 ESBL 생성 여부에 따라서 두 군으로 구분하여 임상적 특징 및 혈액학적 검사 소견을 의무기록을 토대로 조사하여 두 군간 비교를 시행하였다. 결과: 배양 검사에서 ESBL 양성은 총 18명 20균주였고, ESBL 음성은 총 30명 35균주 였다. ESBL 생성 20균주 중 E. coli 가 13균주, K. pneumoniae가 7균주 였다. ESBL 양성 균주와 ESBL 음성 균주 소변배양 검사에서 각각 10균주 및 23균주로 가장 많이 검출되었다. 1분 및 5분 Apgar 점수는 ESBL 양성 환아군에서 통계학적으로 유의하게 더 낮았고(P=0.002, P=0.001). 산소 공급 필요성은 ESBL 양성 환아군에서 더 많았고(56% vs. 27%;P=0.005), 산소 공급 일수도 ESBL 양성 환아군에서 더 길었다(15.8${\pm}$38.43일 vs. 4.3${\pm}$12.5일; P=0.008). 배양 검사 양성 시점의 발열, 무호흡, 산모력, 성별, 재태 연령, 출생 체중에서는 두 군간 유의한 차이는 없었다. 혈액학적 검사에서 배양 검사 양성 시점 빈혈은 ESBL 양성 환아군에서 더 많았으나(33% vs. 7%;P=0.040) 혈색소, 백혈구수, 혈소판수 및CRP는 유의한 차이를 보이지 않았다. 결론: ESBL 양성 환아군이 음성인 환아군에 비해 Apgar 점수가 낮았고 상대적으로 빈혈이 더 빈번하였다. 출생 시에 낮은 Apgar 점수를 보이는 환아들 중에서 기존 항생제를 사용 중인 환아에서 감염증의 새로운 증상이 보이거나 환아의 상태가 악화되는 경우에는 조기에 carbapenem 항생제를 사용하는 것을 고려할 수 있을 것으로 생각된다.

Keywords

References

  1. Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother 2005;56:52-9. https://doi.org/10.1093/jac/dki166
  2. Du Bois SK, Marriott MS, Amyes SG. TEM- and SHV-derived extended-spectrum beta-lactamases: relationship between selection, structure and function. J Antimicrob Chemother 1995;35:7-22. https://doi.org/10.1093/jac/35.1.7
  3. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005;18:657-86. https://doi.org/10.1128/CMR.18.4.657-686.2005
  4. Rodriguez-Bano J, Navarro MD, Romero L, Muniain MA, de Cueto M, Rios MJ, et al. Bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis 2006;43:1407-14. https://doi.org/10.1086/508877
  5. Pai H. The characteristics of extended spectrum ${\beta}$-lactamases in Korean isolates of Enterobacteriaceae. Yonsei Med J 1998;39:514-9.
  6. Cotton MF, Wasserman E, Pieper CH, Theron DC, van Tubbergh D, Campbell G, et al. Invasive disease due to extended spectrum beta-lactamase-producing Klebsiella pneumonia in a neonatal unit: the possible role of cockroaches. J Hosp Infect 2000;44:13-7. https://doi.org/10.1053/jhin.1999.0650
  7. Royle J, Halasz S, Eagles G, Gilbert G, Dalton D, Jelfs P, et al. Outbreak of extended spectrum beta lactamase producing Klebsiella pneumoniae in a neonatal unit. Arch Dis Child Fetal Neonatal Ed 1999;80:F64-8. https://doi.org/10.1136/fn.80.1.F64
  8. Pen C, Pujol M, Ricart A, Ardanuy C, Ayats J, Linares J, et al. Risk factors for faecal carriage of Klebsiella pneumoniae producing extended spectrum beta-lactamase (ESBL-KP) in the intensive care unit. J Hosp Infect 1997;35:9-16. https://doi.org/10.1016/S0195-6701(97)90163-8
  9. Rice LB. Successful interventions for gram-negative resistance to extended-spectrum beta-lactam antiobiotics. Pharmacotherapy 1999;19:120-8S. https://doi.org/10.1592/phco.19.12.120S.31699
  10. Jun NL, Im JW, Park HK, Kim MN, Kim EA, Kim KS, et al. Clinical characteristics and epidemiologic study of infection due to extended spectrum beta-lactamase producing organism in a neonatal intensive care unit. Korean J Pediatr 2004;47:373-9.
  11. Lamotte-Brasseur J, Knox J, Kelly JA, Charlier P, Fonze E, Dideberg O, et al. The structures and catalytic mechanisms of active-site serine beta-lactamases. Biotechnol Genet Eng Rev 1994;12:189-230. https://doi.org/10.1080/02648725.1994.10647912
  12. Davis J. Inactivation of antibiotics and the dissemination of resistance genes. Science 1994;264:375-82. https://doi.org/10.1126/science.8153624
  13. Dieckema DJ, Pfaller MA, Jones RN, Doern GV, Winokur PL, Gales AC, et al. Survey of bloodstream infections due to gramnegative bacilli: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, and Latin America for SENTRY Antimicrobial Surveillance Program. Clin Infect Dis 1999;29:595-607. https://doi.org/10.1086/598640
  14. Neu HC. The crisis in antibiotic resistance. Science 1992;257:1064-73. https://doi.org/10.1126/science.257.5073.1064
  15. Siu LK, Lu PL, Hsuch PR, Lin FM, Chang SC, Luh KT, et al. Bacteremia due to extended -spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae in a pediatric oncology ward: clinical features and identification of different plasmids carrying both SHV-5 and TEM-1 genes. J Clin Microbiol 1999;37:4020-7.
  16. Silva J, Gatica R, Aguilar C, Becerra Z, Garza-Ramos U, Velazquez M, et al. Outbreak of infection with extended-spectrum betalactamase- producing Klebsiella pneumoniae in a Mexican hospital. J Clin Microbiol 2001;39:3193-6. https://doi.org/10.1128/JCM.39.9.3193-3196.2001
  17. Venezia RA, Scarano FJ, Preston KE, Steele LM, Root TP, Limberger R, et al. Molecular epidemiology of an SHV-5 extended spectrum beta-lactamase in enterobacteriaceae isolated from infants in a neonatal intensive care unit. Clin Infect Dis 1995;21:915-23. https://doi.org/10.1093/clinids/21.4.915
  18. Gupta A. Hospital-acquired infections in the neonatal intensive care unit-Klebsiella pneumoniae. Semin Perinatol 2002;26:340-5. https://doi.org/10.1053/sper.2002.36267
  19. Stoll BJ, Hansen NI, Sanchez PJ, Faix RG, Poindexter BB, Van meurs KP, et.al. Early onset neonatal sepsis : the burden of group B Streptococcal and E. coli disease continues. Pediatrics 2011;127:817-26. https://doi.org/10.1542/peds.2010-2217
  20. Hwang MH, Lee HK, Kim HJ, Min YS, Park KB, Park JS, et al. Clinical and molecular-biologic study of extended spectrum betalactamase producing Klebsiella pneumoniae in a neonatal intensive care unit. J Korean Soc Neonatol 2001;8:25-32.
  21. Choi UY, Lee JS, Lee JH. Predictors of serious bacterial and viral infections among neonates with fever. J Korean Soc Neonatol 2008;15:61-6.
  22. Mendelson G, Hait V, Ben-Israel J, Gronich D, Granot E, Raz R. Prevalence and risk factors of extended-spectrum beta-lactamaseproducing Escherichia coli and Klebsiella pneumoniae in an Israeli long-term care facility. Eur J Clin Microbiol Infect Dis 2005;24:17-22. https://doi.org/10.1007/s10096-004-1264-8