The Anti-Inflammatory Effects of Statin in 5/6 Nephrectomized Rats

5/6 신절제 백서에서 Statin의 염증억제 효과에 대한 연구

  • Park, Moo-Yong (Department of Internal Medicine, Soonchunhyang University College of Medicine) ;
  • Choi, Soo-Jung (Department of Internal Medicine, Soonchunhyang University College of Medicine) ;
  • Kim, Jin-Kook (Department of Internal Medicine, Soonchunhyang University College of Medicine) ;
  • Hwang, Seung-Duk (Department of Internal Medicine, Soonchunhyang University College of Medicine)
  • 박무용 (순천향대학교 의과대학 내과학교실) ;
  • 최수정 (순천향대학교 의과대학 내과학교실) ;
  • 김진국 (순천향대학교 의과대학 내과학교실) ;
  • 황승덕 (순천향대학교 의과대학 내과학교실)
  • Published : 2011.12.01

Abstract

Background/Aims: In a previous study, statin therapy reduced proteinuria and ameliorated the progression of chronic kidney disease. However, in patients with chronic renal failure (CRF), the beneficial effect of statin therapy on the preservation of renal function has not been determined. Thus, we determined the effect of rosuvastatin on CRF. Methods: Male Sprague-Dawley rats (6 weeks old) were subjected to 5/6 nephrectomy. Six weeks after the procedure, the rats were divided into control and rosuvastatin-treated groups. Body weight and blood/urine biochemical parameters were measured 6 weeks after 5/6 nephrectomy and 8 weeks after the start of rosuvastatin treatment. Remnant kidneys were harvested at 6 (n = 4) and 14 (n = 8) weeks after 5/6 nephrectomy. Results: During rosuvastatin treatment, changes in body weight and serum total and low-density lipoprotein cholesterol did not differ significantly between the control and rosuvastatin-treated groups. Although serum creatinine and proteinuria increased in both groups, the differences were not significant (p = 0.24 and 0.77, respectively). Immunohistochemical staining, enzyme-linked immunosorbent assays, and western blotting showed that the expression of transforming growth $factor-{\beta}1$ and intracellular adhesion molecule-1 were reduced in the rosuvastatin-treated group. Conclusions: Long-term statin treatment may attenuate the inflammatory process in the progression of renal failure.

목적: Statin이 만성 콩팥병환자에게서 심혈관계 합병증을 감소시키고 단백뇨 감소 효과와 함께 신기능 저하를 지연시키는 작용이 있음은 잘 알려져 있다. 그러나 이미 만성신부전으로 진행된 콩팥병에서 신기능 보호 효과에 대해서는 아직 뚜렷하지 않다. 이에 저자는 만성신부전 쥐 모델에서 statin에 의한 신기능 보호 효과를 알기 위해 연구를 하였다. 방법: 6주 연령의 수컷 Sprague-Dawley (SD) 백서를 대상으로 5/6 신절제술을 시행 후 6주간 관찰하여 만성신부전 모델을 만든 후 대조군과 치료군으로 나누어, 치료군은 rosuvastatin을 8주간 투여하였다. 채혈과 24시간 소변 수집은 신절제술 후 6주와 14주에 각각 시행하였고, 잔여 신장은 6주와 14주에 백서를 희생하여 회수하였다. 결과: 총 12마리 중 6주에 4마리, 14주에 대조군 4마리와 치료군 4마리를 희생하였다. 5/6 신절제 후 6주에 채혈한 검사에서 대조군과 치료군의 평균 크레아티닌은 각각 0.89 ${\pm}$ 0.14 mg/dL, 0.86 ${\pm}$ 0.05 mg/dL (p = 0.55)이었다. 14주에 채혈한 대조군과 치료군의 평균 크레아티닌은 각각 0.97 ${\pm}$ 0.05 mg/dL, 0.94 ${\pm}$ 0.11 mg/dL이었다(p = 0.77). 두 군 사이의 총 콜레스테롤, low density lipoprotein (LDL) 콜레스테롤과 중성 지방은 차이가 없었다. 두 군에서 6주와 14주에 사이의 크레아티닌과 단백뇨의 변화를 비하였을 때 두 군 모두 크레아티닌과 단백뇨가 시간의 경과에 따라 증가하는 추세를 보였으나, 증가 정도를 비교할 때 대조군과 치료군 사이에 유의한 차이는 없었다(p = 0.24, p = 0.77). 신장 조직의 면역조직 화학 염색에서 치료군의 intracellular adhesion molecule-1 (ICAM-1)과 transforming growth factor (TGF)-${\beta}1$ 발현이 감소되어 있었고, 전체 신장 조직의 TGF-${\beta}1$ 농도도 치료군이 유의 하게 낮았다(p = 0.021). 신장 조직에서 측정한 malondialdehyde (MDA) 평균 농도는 치료군이 낮았으나 통계적으로 유의한 차이는 없었다(p = 0.34). 결론: 만성신부전에서 statin 치료는 신부전의 진행에 중요한 항염증 효과를 나타낸다.

Keywords

References

  1. Casey PJ. Protein lipidation in cell signaling. Science 1995; 268:221-225. https://doi.org/10.1126/science.7716512
  2. Mason JC. Statins and their role in vascular protection. Clin Sci (Lond) 2003;105:251-266. https://doi.org/10.1042/CS20030148
  3. Pierre-Paul D, Gahtan V. Noncholesterol-lowering effects of statins. Vasc Endovascular Surg 2003;37:301-313. https://doi.org/10.1177/153857440303700501
  4. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 2001; 59:260-269. https://doi.org/10.1046/j.1523-1755.2001.00487.x
  5. Tonelli M, Moye L, Sacks FM, Cole T, Curhan GC; Cholesterol and Recurrent Events Trial Investigators. Effect of pravastatin on loss of renal function in people with moderate chronic renal insufficiency and cardiovascular disease. J Am Soc Nephrol 2003;14:1605-1613. https://doi.org/10.1097/01.ASN.0000068461.45784.2F
  6. Vidt DG, Harris S, McTaggart F, Ditmarsch M, Sager PT, Sorof JM. Effect of short-term rosuvastatin treatment on estimated glomerular filtration rate. Am J Cardiol 2006;97:1602-1606. https://doi.org/10.1016/j.amjcard.2005.12.052
  7. Verma A, Ranganna KM, Reddy RS, Verma M, Gordon NF. Effect of rosuvastatin on C-reactive protein and renal function in patients with chronic kidney disease. Am J Cardiol 2005;96:1290-1292. https://doi.org/10.1016/j.amjcard.2005.06.074
  8. Vidt DG, Cressman MD, Harris S, Pears JS, Hutchinson HG. Rosuvastatin-induced arrest in progression of renal disease. Cardiology 2004;102:52-60. https://doi.org/10.1159/000077704
  9. Bianchi S, Bigazzi R, Caiazza A, Campese VM. A controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis 2003;41: 565-570. https://doi.org/10.1053/ajkd.2003.50140
  10. Tonolo G, Melis MG, Formato M, et al. Additive effects of simvastatin beyond its effects on LDL cholesterol in hypertensive type 2 diabetic patients. Eur J Clin Invest 2000;30:980-987. https://doi.org/10.1046/j.1365-2362.2000.00735.x
  11. Bae EH, Kim IJ, Park JW, Ma SK, Lee JU, Kim SW. Renoprotective effect of rosuvastatin in DOCA-salt hypertensive rats. Nephrol Dial Transplant 2010;25:1051-1059. https://doi.org/10.1093/ndt/gfp604
  12. Yokota N, O'Donnell M, Daniels F, et al. Protective effect of HMG-CoA reductase inhibitor on experimental renal ischemiareperfusion injury. Am J Nephrol 2003;23:13-17. https://doi.org/10.1159/000066301
  13. Yoshimura A, Inui K, Nemoto T, et al. Simvastatin suppresses glomerular cell proliferation and macrophage infiltration in rats with mesangial proliferative nephritis. J Am Soc Nephrol 1998; 9:2027-2039.
  14. Li C, Yang CW, Park JH, et al. Pravastatin treatment attenuates interstitial inflammation and fibrosis in a rat model of chronic cyclosporine-induced nephropathy. Am J Physiol Renal Physiol 2004;286:F46-F57. https://doi.org/10.1152/ajprenal.00428.2002
  15. Cormack-Aboud FC, Brinkkoetter PT, Pippin JW, Shankland SJ, Durvasula RV. Rosuvastatin protects against podocyte apoptosis in vitro. Nephrol Dial Transplant 2009;24:404-412.
  16. Cybulsky AV. Growth factor pathways in proliferative glomerulonephritis. Curr Opin Nephrol Hypertens 2000;9:217-223. https://doi.org/10.1097/00041552-200005000-00003
  17. El-Nahas AM. Plasticity of kidney cells: role in kidney remodeling and scarring. Kidney Int 2003;64:1553-1563. https://doi.org/10.1046/j.1523-1755.2003.00255.x
  18. Zeisberg M, Strutz F, Muller GA. Renal fibrosis: an update. Curr Opin Nephrol Hypertens 2001;10:315-320. https://doi.org/10.1097/00041552-200105000-00004
  19. Vaziri ND, Dicus M, Ho ND, Boroujerdi-Rad L, Sindhu RK. Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int 2003;63:179-185. https://doi.org/10.1046/j.1523-1755.2003.00702.x
  20. Iglesias-De La Cruz MC, Ruiz-Torres P, Alcami J, et al. Hydrogen peroxide increases extracellular matrix mRNA through TGF-beta in human mesangial cells. Kidney Int 2001;59:87-95. https://doi.org/10.1046/j.1523-1755.2001.00469.x
  21. Ha H, Lee HB. Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int Suppl 2000;77:S19-S25.
  22. Haugen E, Nath KA. The involvement of oxidative stress in the progression of renal injury. Blood Purif 1999;17:58-65. https://doi.org/10.1159/000014377
  23. Agarwal R. Proinflammatory effects of oxidative stress in chronic kidney disease: role of additional angiotensin II blockade. Am J Physiol Renal Physiol 2003;284:F863-F869. https://doi.org/10.1152/ajprenal.00385.2002
  24. Whaley-Connell A, Habibi J, Nistala R, et al. Attenuation of NADPH oxidase activation and glomerular filtration barrier remodeling with statin treatment. Hypertension 2008;51:474-480. https://doi.org/10.1161/HYPERTENSIONAHA.107.102467
  25. Bottinger EP, Letterio JJ, Roberts AB. Biology of TGF-beta in knockout and transgenic mouse models. Kidney Int 1997;51: 1355-1360. https://doi.org/10.1038/ki.1997.185
  26. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 2003;116(Pt 2):217-224. https://doi.org/10.1242/jcs.00229
  27. Fukuda N, Tahira Y, Matsuda H, Matsumoto K. Transforming growth factor-beta as a treatment target in renal diseases. J Nephrol 2009;22:708-715.
  28. Bulhak A, Roy J, Hedin U, Sjoquist PO, Pernow J. Cardioprotective effect of rosuvastatin in vivo is dependent on inhibition of geranylgeranyl pyrophosphate and altered RhoA membrane translocation. Am J Physiol Heart Circ Physiol 2007;292: H3158-H3163. https://doi.org/10.1152/ajpheart.01354.2006
  29. Yagi S, Aihara K, Ikeda Y, et al. Pitavastatin, an HMG-CoA reductase inhibitor, exerts eNOS-independent protective actions against angiotensin II induced cardiovascular remodeling and renal insufficiency. Circ Res 2008;102:68-76. https://doi.org/10.1161/CIRCRESAHA.107.163493
  30. Han DC, Kim JH, Cha MK, Song KI, Hwang SD, Lee HB. Effect of HMG CoA reductase inhibition on TGF-beta 1 mRNA expression in diabetic rat glomeruli. Kidney Int Suppl 1995; 51:S61-S65.
  31. Zoja C, Corna D, Camozzi D, et al. How to fully protect the kidney in a severe model of progressive nephropathy: a multidrug approach. J Am Soc Nephrol 2002;13:2898-2908. https://doi.org/10.1097/01.ASN.0000034912.55186.EC
  32. Song CY, Kim BC, Lee HS. Lovastatin inhibits oxidized low-density lipoprotein-induced plasminogen activator inhibitor and transforming growth factor-beta1 expression via a decrease in Ras/extracellular signal-regulated kinase activity in mesangial cells. Transl Res 2008;151:27-35. https://doi.org/10.1016/j.trsl.2007.09.008
  33. Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 1988;52:925-933. https://doi.org/10.1016/0092-8674(88)90434-5
  34. Kido Y, Ogawa D, Shikata K, et al. Intercellular adhesion molecule-1 plays a critical role in glomerulosclerosis after subtotal nephrectomy. Clin Exp Nephrol 2011;15:212-219. https://doi.org/10.1007/s10157-010-0388-7
  35. Usui H, Shikata K, Matsuda M, et al. HMG-CoA reductase inhibitor ameliorates diabetic nephropathy by its pleiotropic effects in rats. Nephrol Dial Transplant 2003;18:265-272. https://doi.org/10.1093/ndt/18.2.265
  36. Park JK, Mervaala EM, Muller DN, et al. Rosuvastatin protects against angiotensin II-induced renal injury in a dose-dependent fashion. J Hypertens 2009;27:599-605. https://doi.org/10.1097/HJH.0b013e32831ef369
  37. Kim YS, Ahn Y, Hong MH, et al. Rosuvastatin suppresses the inflammatory responses through inhibition of c-Jun N-terminal kinase and nuclear factor-kappaB in endothelial cells. J Cardiovasc Pharmacol 2007;49:376-383. https://doi.org/10.1097/FJC.0b013e31804a5e34
  38. Desbuards N, Hyvelin JM, Machet MC, et al. Heme oxygenase-1 inducer hemin attenuates the progression of remnant kidney model. Nephron Exp Nephrol 2009;113:e35-e44. https://doi.org/10.1159/000228081
  39. Esposito C, Villa L, Grosjean F, et al. Rapamycin reduces proteinuria and renal damage in the rat remnant kidney model. Transplant Proc 2009;41:1370-1371. https://doi.org/10.1016/j.transproceed.2009.04.005
  40. Morath C, Ratzlaff K, Dechow C, et al. Chronic low-dose isotretinoin treatment limits renal damage in subtotally nephrectomized rats. J Mol Med (Berl) 2009;87:53-64. https://doi.org/10.1007/s00109-008-0404-5