DOI QR코드

DOI QR Code

Histological and immunohistochemical studies on the epididymal duct in the dromedary camel (Camelus dromedarius)

  • Alkafafy, Mohamed (Department of Cytology and Histology, Faculty of Veterinary Medicine, Minufiya University) ;
  • Rashed, Reda (Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Minufiya University) ;
  • Emara, Saad (Department of Cytology and Histology, Faculty of Veterinary Medicine, Minufiya University) ;
  • Nada, Mohamed (Department of Cytology and Histology, Faculty of Veterinary Medicine, Minufiya University) ;
  • Helal, Amr (Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University)
  • Published : 2011.12.31

Abstract

This study was conducted to underscore the spatial distribution of some biologically active proteins within the epididymal duct in the dromedary camel. Paraffin-embedded sections from different regions of epididymis were stained by conventional histological techniques and by immunohistochemistry. A battery of primary antibodies against six proteins (S100, alpha smooth muscle actin [${\alpha}$-SMA], connexin-43 [CX43], galactosyltransferase [GalTase], angiotensin converting enzyme [ACE], and vascular endothelial growth factor [VEGF]) were used. The epididymal epithelium consisted of five cell populations: principal, basal, apical, dark, and halo cells. The histochemical findings indicated the absence of binding sites for VEGF and CX43. The principal cells (PCs) showed variable immunoreactivity (IR) for ACE, S100, and GalTase throughout the whole length of the duct. The apical surfaces of most PCs (at the caput) and some PCs (at the corpus) exhibited intense ACEIR, whereas those at the cauda displayed alternating negative and strong immunostaining. Similarly, moderate S100-IR was found in cytoplasm and nuclei of all PCs at the caput, few PCs at the corpus, and several PCs alternating with negative PCs at the cauda. In contrast, only some PCs showed weak to strong GalTase-IR in different regions. Apart from negative to weak positive S100-IR, basal cells failed to show IR for all other proteins. Apical cells displayed strong IR for ACE, S100, and GalTase with some regional differences. The peritubular and vascular smooth muscle cells revealed strong ${\alpha}$-SMA-IR in all regions. In conclusion, the spatial distribution of different proteins in camel epididymis showed similarities and diff erences to other mammalian species. The region-specific topographic distribution of different proteins and cell types might indicate that the caput and cauda are metabolically more active than that of the corpus.

Keywords

References

  1. Ha TY, Ahn MJ, Lee YD, Yang JH, Kim HS, Shin TK. Histochemical detection of glycoconjugates in the male repro ductive system of the horse. J Vet Sci 2003;4:21-8.
  2. Alkafafy M. Glycohistochemical, immunohistochemical and ultrastructural studies of the bovine epididymis [dissertation]. Munich: Ludwig Maximilian University of Munich; 2005.
  3. Parlevliet JM, Pearl CA, Hess MF, Famula TR, Roser JF. Immunolocalization of estrogen and androgen receptors and steroid concentrations in the stallion epididymis. Theriogenology 2006;66:755-65. https://doi.org/10.1016/j.theriogenology.2005.12.013
  4. Hejmej A, Kotula-Balak M, Sadowska J, Bilinska B. Expression of connexin 43 protein in testes, epididymides and prostates of stallions. Equine Vet J 2007;39:122-7. https://doi.org/10.2746/042516407X169393
  5. Pearl CA, Berger T, Roser JF. Estrogen and androgen receptor expression in relation to steroid concentrations in the adult boar epididymis. Domest Anim Endocrinol 2007;33:451-9. https://doi.org/10.1016/j.domaniend.2006.09.003
  6. Schon J, Blottner S. Seasonal variations in the epididymis of the roe deer (Capreolus capreolus). Anim Reprod Sci 2009;111:344-52. https://doi.org/10.1016/j.anireprosci.2008.03.008
  7. Alkafafy M. Some immunohistochemical studies on the epididymal duct in the donkey (Equus asinus). J Vet Anat 2009;2:23-40.
  8. Schick B, Habermann F, Sinowatz F. Histochemical detection of glycoconjugates in the canine epididymis. Anat Histol Embryol 2009;38:122-7. https://doi.org/10.1111/j.1439-0264.2008.00908.x
  9. Alkafafy M, Elnasharty M, Sayed-Ahmed A, Abdrabou M. Immunohistochemical studies of the epididymal duct in Egyptian water buffalo (Bubalus bubalis). Acta Histochem 2011;113:96-102. https://doi.org/10.1016/j.acthis.2009.08.004
  10. Tingari MD, Moniem KA. On the regional histology and histochemistry of the epididymis of the camel (Camelus dromedarius). J Reprod Fertil 1979;57:11-20. https://doi.org/10.1530/jrf.0.0570011
  11. Singh UB, Bharadwaj MB. Histological studies on the testicular seminal pathway and changes in the epididymis of the camel (Camelus dromedarius). Part IV. Acta Anat (Basel) 1980;108:481-9. https://doi.org/10.1159/000145347
  12. Ebada SM. Light and electron microscopic studies on the epididymis of the dromedary camel [thesis]. Zagazig: Zagazig University; 1994.
  13. Abd El-maksoud FM. Morphological studies on the seasonal changes in the epididymis of the one-humped camel (Camelus dromedarius) [thesis]. Assiut: Assiut University; 2010
  14. Alkafafy M, Ebada S, Rashed R, Attia H. Comparative morphometric and glycohistochemical studies on the epididymal duct in the donkey (Equus asinus) and dromedary camel (Camelus dromedarius). Acta Histochem 2011 Sep 7 [Epub]. http://dx.doi.org/10.1016/j.acthis.2011.08.005.
  15. Al Eknah MM. Reproduction in Old World camels. Anim Reprod Sci 2000;60-61:583-92. https://doi.org/10.1016/S0378-4320(00)00134-2
  16. Zayed AE, Hifny A, Abou-Elmagd A, Wrobel KH. Seasonal changes in the intertubular tissue of the camel testis (Camelus dromedarius). Ann Anat 1995;177:199-212. https://doi.org/10.1016/S0940-9602(11)80185-8
  17. Dacheux JL, Gatti JL, Dacheux F. Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc Res Tech 2003;61:7-17. https://doi.org/10.1002/jemt.10312
  18. Gatti JL, Castella S, Dacheux F, Ecroyd H, Metayer S, Thimon V, Dacheux JL. Post-testicular sperm environment and fertility. Anim Reprod Sci 2004;82-83:321-39. https://doi.org/10.1016/j.anireprosci.2004.05.011
  19. Axner E. Sperm maturation in the domestic cat. Theriogenology 2006;66:14-24. https://doi.org/10.1016/j.theriogenology.2006.03.022
  20. Cornwall GA, von Horsten HH, Swartz D, Johnson S, Chau K, Whelly S. Extracellular quality control in the epididymis. Asian J Androl 2007;9:500-7. https://doi.org/10.1111/j.1745-7262.2007.00309.x
  21. Sostaric E, Aalberts M, Gadella BM, Stout TA. The roles of the epididymis and prostasomes in the attainment of fertilizing capacity by stallion sperm. Anim Reprod Sci 2008;107:237-48. https://doi.org/10.1016/j.anireprosci.2008.04.011
  22. Danguy A, Decaestecker C, Genten F, Salmon I, Kiss R. Applications of lectins and neoglycoconjugates in histology and pathology. Acta Anat (Basel) 1998;161:206-18. https://doi.org/10.1159/000046459
  23. Soff er RL. Angiotensin-converting enzyme and the regulation of vasoactive peptides. Annu Rev Biochem 1976;45:73-94. https://doi.org/10.1146/annurev.bi.45.070176.000445
  24. O'Mahony OA, Djahanbahkch O, Mahmood T, Puddefoot JR, Vinson GP. Angiotensin II in human seminal fluid. Hum Reprod 2000;15:1345-9. https://doi.org/10.1093/humrep/15.6.1345
  25. Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci 2002;7:d1356-68. https://doi.org/10.2741/heizmann
  26. Ramakrishnan B, Shah PS, Qasba PK. alpha-Lactalbumin (LA) stimulates milk beta-1,4-galactosyltransferase I (beta 4Gal-T1) to transfer glucose from UDP-glucose to N-acetylglucosamine. Crystal structure of beta 4Gal-T1 x LA complex with UDP-Glc. J Biol Chem 2001;276:37665-71. https://doi.org/10.1074/jbc.M102458200
  27. Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, Ravazzola M, Orci L. Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 1989;37:315-21. https://doi.org/10.1177/37.3.2918221
  28. Segretain D, Falk MM. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta 2004;1662:3-21. https://doi.org/10.1016/j.bbamem.2004.01.007
  29. Hetian L, Ping A, Shumei S, Xiaoying L, Luowen H, Jian W, Lin M, Meisheng L, Junshan Y, Chengchao S. A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem 2002;277:43137-42. https://doi.org/10.1074/jbc.M203103200
  30. Ekerbicer N, Tarakci F, Barut T, Inan S. Immunolocalization of VEGF, VEGFR-1 and VEGFR-2 in lung tissues after acute hemorrhage in rats. Acta Histochem 2008;110:285-93. https://doi.org/10.1016/j.acthis.2007.10.010
  31. Bancroft JD, Stevens A, Turner DR. Theory and practice of histological techniques. 4th ed. London, Toronto: Churchill Livingstone; 1996.
  32. Goyal HO, Williams CS. Regional diff erences in the morphology of the goat epididymis: a light microscopic and ultrastructural study. Am J Anat 1991;190:349-69. https://doi.org/10.1002/aja.1001900404
  33. Palacios J, Regadera J, Nistal M, Paniagua R. Apical mitochondria- rich cells in the human epididymis: an ultrastruc tural, enzymohistochemical, and immunohistochemical study. Anat Rec 1991;231:82-8. https://doi.org/10.1002/ar.1092310109
  34. Cruzana MB, Budipitojo T, De Ocampo G, Sasaki M, Kitamura N, Yamada J. Immunohistochemical distribution of S-100 protein and subunits (S100-alpha and S100-beta) in the swamp-type water buffalo (Bubalus bubalis) testis. Andrologia 2003;35:142-5. https://doi.org/10.1046/j.1439-0272.2003.00550.x
  35. Czykier E, Zabel M, Surdyk-Zasada J, Lebelt A, Klim B. Assess ment of S100 protein expression in the epididymis of juvenile and adult European bison. Folia Histochem Cytobiol 2010;48:333-8. https://doi.org/10.2478/v10042-10-0020-4
  36. Vivet F, Callard P, Gamoudi A. Immunolocalization of angiotensin 1 converting enzyme in the human male genital tract by the avidin-biotin-complex method. Histochemistry 1987;86:499-502. https://doi.org/10.1007/BF00500623
  37. Franke FE, Pauls K, Metzger R, Danilov SM. Angiotensin I-converting enzyme and potential substrates in human testis and testicular tumours. APMIS 2003;111:234-43. https://doi.org/10.1034/j.1600-0463.2003.11101271.x
  38. Leung PS. The peptide hormone angiotensin II: its new functions in tissues and organs. Curr Protein Pept Sci 2004;5:267-73. https://doi.org/10.2174/1389203043379693
  39. Ross P, Vigneault N, Provencher S, Potier M, Roberts KD. Partial characterization of galactosyltransferase in human seminal plasma and its distribution in the human epididymis. J Reprod Fertil 1993;98:129-37. https://doi.org/10.1530/jrf.0.0980129
  40. Hennet T. The galactosyltransferase family. Cell Mol Life Sci 2002;59:1081-95. https://doi.org/10.1007/s00018-002-8489-4
  41. Ergun S, Luttmer W, Fiedler W, Holstein AF. Functional expression and localization of vascular endothelial growth factor and its receptors in the human epididymis. Biol Reprod 1998;58:160-8. https://doi.org/10.1095/biolreprod58.1.160
  42. Ai QY, Tian H, Zhang J, Ma L, Miao NZ, Huo YW, Wang LR, Qiu SD, Zhang QY. Expressions of VEGF and Flt-1 in the testis, epididymis and epididymal sperm of adolescent rats. Zhonghua Nan Ke Xue 2008;14:871-5.
  43. Marchlewicz M. Localization of immunocompetent cells in the human epididymis. Folia Histochem Cytobiol 2001;39:173-4.
  44. Abd-Elmaksoud A. Comparative expression of laminin and smooth muscle actin in the testis and epididymis of poultry and rabbit. J Mol Histol 2009;40:407-16. https://doi.org/10.1007/s10735-010-9254-x
  45. Czykier E, Sawicki B, Zabel M. S-100 protein immunoreactivity in mammalian testis and epididymis. Folia Histochem Cytobiol 2000;38:163-6.
  46. Ferrer L, Rabanal RM, Fondevila D, Prats N. Immunocytochemical demonstration of intermediate filament proteins, S-100 protein and CEA in apocrine sweat glands and apocrine gland derived lesions of the dog. Zentralbl Veterinarmed A 1990;37:569-76. https://doi.org/10.1111/j.1439-0442.1990.tb00946.x
  47. Ebada S, Helal A, Alkafafy M. Immunohistochemical studies on the poll gland of the dromedary camel (Camelus dromedarius) during the rutting season. Acta Histochem 2011 Aug 18 [Epub]. http://dx.doi.org/10.1016/j.acthis.2011.07.005.
  48. Mandinova A, Atar D, Schäfer BW, Spiess M, Aebi U, Heizmann CW. Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. J Cell Sci 1998;111(Pt 14):2043-54.
  49. Hinton BT. What does the epididymis do and how does it do it? In: Robaire B, Chan P, editors. Handbook of Andrology. Lawrence, KS: Allen Press, Inc.; 2010.
  50. Dufresne J, Finnson KW, Gregory M, Cyr DG. Expression of multiple connexins in the rat epididymis indicates a complex regulation of gap junctional communication. Am J Physiol Cell Physiol 2003;284:C33-43. https://doi.org/10.1152/ajpcell.00111.2002
  51. Moore HD, Bedford JM. The differential absorptive activity of epithelial cells of the rat epididymus before and after castration. Anat Rec 1979;193:313-27. https://doi.org/10.1002/ar.1091930210
  52. Amann RP. Structure and function of the normal testis and epididymis. Int J Toxicol 1989;8:457-71. https://doi.org/10.3109/10915818909014532
  53. Bidwai PP, Bawa SR. Correlative study of the ultrastructure and the physiology of the seasonal regression of the epididymal epithelium in the hedgehog Paraechinus micropus. Andrologia 1981;13:20-32.
  54. Arrighi S, Romanello MG, Domeneghini C. Ultrastructure of epididymal epithelium in Equus caballus. Ann Anat 1993;175:1-9. https://doi.org/10.1016/S0940-9602(11)80229-3
  55. Yeung CH, Nashan D, Sorg C, Oberpenning F, Schulze H, Nieschlag E, Cooper TG. Basal cells of the human epididymis: antigenic and ultrastructural similarities to tissue-fixed macrophages. Biol Reprod 1994;50:917-26. https://doi.org/10.1095/biolreprod50.4.917
  56. Martinez-Garcia F, Regadera J, Cobo P, Palacios J, Paniagua R, Nistal M. The apical mitochondria-rich cells of the mammalian epididymis. Andrologia 1995;27:195-206.
  57. Abou-Haila A, Fain-Maurel MA. Regional differences of the proximal part of mouse epididymis: morphological and histochemical characterization. Anat Rec 1984;209:197-208. https://doi.org/10.1002/ar.1092090207
  58. Flickinger CJ, Howards SS, English HF. Ultrastructural differences in efferent ducts and several regions of the epididymis of the hamster. Am J Anat 1978;152:557-85. https://doi.org/10.1002/aja.1001520409
  59. Jensen LJ, Schmitt BM, Berger UV, Nsumu NN, Boron WF, Hediger MA, Brown D, Breton S. Localization of sodium bicarbonate cotransporter (NBC) protein and messenger ribonucleic acid in rat epididymis. Biol Reprod 1999;60:573-9. https://doi.org/10.1095/biolreprod60.3.573

Cited by

  1. Immunohistochemical Studies of αSMA in the Epididymis of African Four-Toed Hedgehog (Atelerix albiventris) vol.64, pp.1, 2011, https://doi.org/10.2478/fv-2020-0002