DOI QR코드

DOI QR Code

Prospect of cell therapy for Parkinson's disease

  • Published : 2011.12.31

Abstract

The hallmark of Parkinson's disease is on-going degeneration of dopaminergic neurons in the substantia nigra, which may be due to various etiologies. Various approaches to alleviate symptoms are available, such as life-long pharmacological intervention, deep brain stimulation, and transplantation of dopaminergic neuron-containing fetal tissue. However, each of these approaches has a disadvantage. Several studies have shown that various kinds of stem cells, induced pluripotent stem cells, and other cells can differentiate into dopaminergic neurons and may be promising for treating Parkinson's disease in the future. Therefore, this review addresses those cells in terms of their prospects in cell therapy for Parkinson's disease. In addition, the need for safety and efficacy studies, various cell delivery modes and sites, and possible side effects will be discussed.

Keywords

References

  1. Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 2006;116:1744-54. https://doi.org/10.1172/JCI29178
  2. Ming M, Li X, Fan X, Yang D, Li L, Chen S, Gu Q, Le W. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic eff ects of RPE cell transplantation in Parkinson's disease. J Transl Med 2009;7:53. https://doi.org/10.1186/1479-5876-7-53
  3. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ Jr, Rothlind J, Sagher O, Reda D, Moy CS, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein J, Stoner G, Heemskerk J, Huang GD; CSP 468 Study Group. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 2009;301:63-73. https://doi.org/10.1001/jama.2008.929
  4. Frankemolle AM, Wu J, Noecker AM, Voelcker-Rehage C, Ho JC, Vitek JL, McIntyre CC, Alberts JL. Reversing cognitivemotor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming. Brain 2010;133(Pt 3):746-61. https://doi.org/10.1093/brain/awp315
  5. Zahodne LB, Okun MS, Foote KD, Fernandez HH, Rodriguez RL, Kirsch-Darrow L, Bowers D. Cognitive declines one year after unilateral deep brain stimulation surgery in Parkinson's disease: a controlled study using reliable change. Clin Neuropsychol 2009;23:385-405. https://doi.org/10.1080/13854040802360582
  6. Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003;9:589-95. https://doi.org/10.1038/nm850
  7. Jeon P, Yang S, Jeong H, Kim H. Cannabinoid receptor agonist protects cultured dopaminergic neurons from the death by the proteasomal dysfunction. Anat Cell Biol 2011;44:135-42. https://doi.org/10.5115/acb.2011.44.2.135
  8. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfi eld H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med 2001;344:710-9. https://doi.org/10.1056/NEJM200103083441002
  9. Mendez I, Vinuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, Tierney T, Holness R, Dagher A, Trojanowski JQ, Isacson O. Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years. Nat Med 2008;14:507-9. https://doi.org/10.1038/nm1752
  10. Xi J, Zhang SC. Stem cells in development of therapeutics for Parkinson's disease: a perspective. J Cell Biochem 2008;105:1153-60. https://doi.org/10.1002/jcb.21916
  11. Joyner AL, Liu A, Millet S. Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 2000;12:736-41. https://doi.org/10.1016/S0955-0674(00)00161-7
  12. Ono Y, Nakatani T, Sakamoto Y, Mizuhara E, Minaki Y, Kumai M, Hamaguchi A, Nishimura M, Inoue Y, Hayashi H, Takahashi J, Imai T. Diff erences in neurogenic potential in fl oor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic fl oor plate cells. Development 2007;134:3213-25. https://doi.org/10.1242/dev.02879
  13. Andersson E, Tryggvason U, Deng Q, Friling S, Alekseenko Z, Robert B, Perlmann T, Ericson J. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 2006;124:393-405. https://doi.org/10.1016/j.cell.2005.10.037
  14. Friling S, Andersson E, Thompson LH, Jonsson ME, Hebsgaard JB, Nanou E, Alekseenko Z, Marklund U, Kjellander S, Volakakis N, Hovatta O, El Manira A, Bjorklund A, Perlmann T, Ericson J. Effi cient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc Natl Acad Sci U S A 2009;106:7613-8. https://doi.org/10.1073/pnas.0902396106
  15. Smidt MP, Burbach JP. How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 2007;8:21-32. https://doi.org/10.1038/nrn2039
  16. Rodriguez-Gomez JA, Lu JQ, Velasco I, Rivera S, Zoghbi SS, Liow JS, Musachio JL, Chin FT, Toyama H, Seidel J, Green MV, Thanos PK, Ichise M, Pike VW, Innis RB, McKay RD. Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells 2007;25:918-28. https://doi.org/10.1634/stemcells.2006-0386
  17. Ko JY, Park CH, Koh HC, Cho YH, Kyhm JH, Kim YS, Lee I, Lee YS, Lee SH. Human embryonic stem cell-derived neural precursors as a continuous, stable, and on-demand source for human dopamine neurons. J Neurochem 2007;103:1417-29. https://doi.org/10.1111/j.1471-4159.2007.04898.x
  18. Ko JY, Lee HS, Park CH, Koh HC, Lee YS, Lee SH. Conditions for tumor-free and dopamine neuron-enriched grafts after transplanting human ES cell-derived neural precursor cells. Mol Ther 2009;17:1761-70. https://doi.org/10.1038/mt.2009.148
  19. Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH, Leem JW, Oh SK, Choi YM, Hwang DY, Chang JW, Kim DW. Highly efficient and largescale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 2008;105:3392-7. https://doi.org/10.1073/pnas.0712359105
  20. Jo AY, Kim MY, Lee HS, Rhee YH, Lee JE, Baek KH, Park CH, Koh HC, Shin I, Lee YS, Lee SH. Generation of dopamine neurons with improved cell survival and phenotype maintenance using a degradation-resistant nurr1 mutant. Stem Cells 2009;27:2238-46. https://doi.org/10.1002/stem.146
  21. Muramatsu S, Okuno T, Suzuki Y, Nakayama T, Kakiuchi T, Takino N, Iida A, Ono F, Terao K, Inoue N, Nakano I, Kondo Y, Tsukada H. Multitracer assessment of dopamine function aft er transplantation of embryonic stem cell-derived neural stem cells in a primate model of Parkinson's disease. Synapse 2009;63:541-8. https://doi.org/10.1002/syn.20634
  22. Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 2010;19:1017-23. https://doi.org/10.1089/scd.2009.0319
  23. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 2011;146:318-31. https://doi.org/10.1016/j.cell.2011.06.019
  24. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol 2009;217:318-24. https://doi.org/10.1002/path.2469
  25. Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007;262:509-25. https://doi.org/10.1111/j.1365-2796.2007.01844.x
  26. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 2006;198:54-64. https://doi.org/10.1016/j.expneurol.2005.10.029
  27. Bahat-Stroomza M, Barhum Y, Levy YS, Karpov O, Bulvik S, Melamed E, Offen D. Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson's disease. J Mol Neurosci 2009;39:199-210. https://doi.org/10.1007/s12031-008-9166-3
  28. Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, Peretz H, Ilan AB, Bulvik S, Shemesh N, Krepel D, Cohen Y, Melamed E, Off en D. Protective eff ects of neurotrophic factorsecreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells Dev 2009;18:1179-90. https://doi.org/10.1089/scd.2008.0411
  29. Shetty P, Ravindran G, Sarang S, Thakur AM, Rao HS, Viswanathan C. Clinical grade mesenchymal stem cells transdif fe rentiated under xenofree conditions alleviates motor defi ciencies in a rat model of Parkinson's disease. Cell Biol Int 2009;33:830-8. https://doi.org/10.1016/j.cellbi.2009.05.002
  30. Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH. Neuroprotective eff ects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 2009;57:13-23. https://doi.org/10.1002/glia.20731
  31. Park HJ, Lee PH, Bang OY, Lee G, Ahn YH. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson's disease. J Neurochem 2008;107:141-51. https://doi.org/10.1111/j.1471-4159.2008.05589.x
  32. Zou Z, Jiang X, Zhang W, Zhou Y, Ke Y, Zhang S, Xu R. Effi cacy of tyrosine hydroxylase gene modifi ed neural stem cells derived from bone marrow on Parkinson's disease: a rat model study. Brain Res 2010;1346:279-86. https://doi.org/10.1016/j.brainres.2010.05.071
  33. Zhu Q, Ma J, Yu L, Yuan C. Grafted neural stem cells migrate to substantia nigra and improve behavior in Parkinsonian rats. Neurosci Lett 2009;462:213-8. https://doi.org/10.1016/j.neulet.2009.07.008
  34. Kubo A, Yoshida T, Kobayashi N, Yokoyama T, Mimura T, Nishiguchi T, Higashida T, Yamamoto I, Kanno H. Efficient generation of dopamine neuron-like cells from skin-derived precursors with a synthetic peptide derived from von Hippel-Lindau protein. Stem Cells Dev 2009;18:1523-32. https://doi.org/10.1089/scd.2008.0379
  35. Jackson JS, Golding JP, Chapon C, Jones WA, Bhakoo KK. Homing of stem cells to sites of infl ammatory brain injury aft er intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 2010;1:17. https://doi.org/10.1186/scrt17
  36. Yang XX, Xue SR, Dong WL, Kong Y. Therapeutic eff ect of human amniotic epithelial cell transplantation into the lateral ventricle of hemiparkinsonian rats. Chin Med J (Engl) 2009;122:2449-54.
  37. Stover NP, Watts RL. Spheramine for treatment of Parkinson's disease. Neurotherapeutics 2008;5:252-9. https://doi.org/10.1016/j.nurt.2008.02.006
  38. Mendez I, Sanchez-Pernaute R, Cooper O, Vinuela A, Ferrari D, Bjorklund L, Dagher A, Isacson O. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain 2005;128(Pt 7):1498-510. https://doi.org/10.1093/brain/awh510
  39. Okano H, Sawamoto K. Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos Trans R Soc Lond B Biol Sci 2008;363:2111-22. https://doi.org/10.1098/rstb.2008.2264
  40. Grealish S, Jonsson ME, Li M, Kirik D, Bjorklund A, Thompson LH. The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson's disease. Brain 2010;133(Pt 2):482-95. https://doi.org/10.1093/brain/awp328
  41. Barker RA, Kuan WL. Graft -induced dyskinesias in Parkinson's disease: what is it all about? Cell Stem Cell 2010;7:148-9. https://doi.org/10.1016/j.stem.2010.07.003
  42. Placzek MR, Chung IM, Macedo HM, Ismail S, Mortera Blanco T, Lim M, Cha JM, Fauzi I, Kang Y, Yeo DC, Ma CY, Polak JM, Panoskaltsis N, Mantalaris A. Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 2009;6:209-32. https://doi.org/10.1098/rsif.2008.0442
  43. Watts RL, Gross RE, Hauser RA, Bakay RA, Reichmann H, Stiver NP, Reissig E, Steiner-Schulze H, Fichte K. A phase 2b study evaluating $Spheramine^{(R)}$ in patients with advanced Parkinson's disease [Internet]. Movement Disorder Virtual University; 2009 [cited 2010 Dec 27]. Available from: http://www.mdvu.org/emove/article.asp?ID=1192.
  44. Farag ES, Vinters HV, Bronstein J. Pathologic fi ndings in retinal pigment epithelial cell implantation for Parkinson disease. Neurology 2009;73:1095-102. https://doi.org/10.1212/WNL.0b013e3181bbff1c
  45. Gao HM, Hong JS, Zhang W, Liu B. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 2002;22:782-90.
  46. Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann Neurol 2005;57:168-75. https://doi.org/10.1002/ana.20338
  47. Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neurosci Lett 2001;316:67-70. https://doi.org/10.1016/S0304-3940(01)02384-9
  48. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007;25:2739-49. https://doi.org/10.1634/stemcells.2007-0197
  49. Th ompson LH, Grealish S, Kirik D, Björklund A. Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. Eur J Neurosci 2009;30:625-38. https://doi.org/10.1111/j.1460-9568.2009.06878.x
  50. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, Toren A, Constantini S, Rechavi G. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 2009;6:e1000029. https://doi.org/10.1371/journal.pmed.1000029
  51. Camp DM, Loeffl er DA, Farrah DM, Borneman JN, LeWitt PA. Cellular immune response to intrastriatally implanted allogeneic bone marrow stromal cells in a rat model of Parkinson's disease. J Neuroinfl ammation 2009;6:17. https://doi.org/10.1186/1742-2094-6-17
  52. Politis M. Dyskinesias aft er neural transplantation in Parkinson's disease: what do we know and what is next? BMC Med 2010;8:80. https://doi.org/10.1186/1741-7015-8-80
  53. Carta M, Carlsson T, Munoz A, Kirik D, Bjorklund A. Role of serotonin neurons in the induction of levodopa- and graftinduced dyskinesias in Parkinson's disease. Mov Disord 2010;25 Suppl 1:S174-9.
  54. Lindvall O, Bjorklund A. Cell replacement therapy: helping the brain to repair itself. NeuroRx 2004;1:379-81. https://doi.org/10.1602/neurorx.1.4.379
  55. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat Med 2008;14:504-6. https://doi.org/10.1038/nm1747
  56. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H, Revesz T, Lindvall O, Brundin P. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 2008;14:501-3. https://doi.org/10.1038/nm1746
  57. Lee PH, Park HJ. Bone marrow-derived mesenchymal stem cell therapy as a candidate disease-modifying strategy in Parkinson's disease and multiple system atrophy. J Clin Neurol 2009;5:1-10.

Cited by

  1. Converted neural cells: induced to a cure? vol.3, pp.2, 2012, https://doi.org/10.1007/s13238-012-2029-2
  2. Approaches for Neural Tissue Regeneration vol.10, pp.1, 2011, https://doi.org/10.1007/s12015-013-9474-z