DOI QR코드

DOI QR Code

연/강성 하중을 받는 복합지반의 응력분담거동에 대한 원심모형시험

Centrifugal Model Test on Stress Concentration Behaviors of Composition Ground under Flexible/Stiff Surcharge Loadings

  • 송명근 (한국철도시설공단 품질시험센터) ;
  • 배우석 ((주)나노지오이엔씨 기술연구소) ;
  • 안상로 (국토해양부 감사관실) ;
  • 허열 (충북대학교 공과대학 토목공학과)
  • 투고 : 2011.02.07
  • 심사 : 2011.04.02
  • 발행 : 2011.06.01

초록

본 연구에서는 조립질 말뚝으로 개량된 점토지반의 응력변화 및 응력분담비의 변화를 파악하기 위하여 말뚝의 종류(GCP, SCP)와 하중재하조건, 치환율을 변화시키면서 원심모형실험을 수행하였다. 강성재하실험 결과, 동일 치환율에서 점토지반에서의 연직응력은 유사한 반면, 말뚝상부에서의 연직응력은 GCP로 보강한 경우가 SCP보다 크게 나타났다. 또한, GCP 및 SCP의 치환율이 증가할수록 평균 응력분담비가 거의 비례적으로 증가하였고, GCP로 개량된 경우 평균 응력분담비가 SCP로 개량된 지반에 비해 크게 평가되었다. 또한 연성재하 실험결과 쇄석다짐말뚝 및 모래다짐말뚝의 치환율이 40%인 경우가 가장 큰 응력분담비를 나타내었으며, GCP로 개량된 경우의 평균 응력분담비가 SCP를 설치한 경우보다 약간 크게 나타났다.

In this study, centrifuge model tests were performed to investigate stress concentration ratio, stress characteristics of soft clay ground improved by granular compaction piles with changes of piles type, loading condition and area replacement ratio. From the results of rigid loading tests, while vertical stresses acting on clay ground is similar, vertical stresses acting on GCP is larger than those acting on SCP with same replacement ratio. Also, average stress concentration ratio is increased proportionally with increasing the area replacement ratio of GCP and SCP. It was evaluated that average stress concentration ratio of soft clay ground improved by GCP is larger than that of SCP. As a result of flexible loading tests, stress concentration ratio is the highest when replacement ratio of GCP and SCP is 40%. Average stress concentration ratio of soft clay ground improved by GCP is a little more higher than is improved by SCP.

키워드

참고문헌

  1. 강준구(1998), SCP 공법에서 말뚝의 응력분담비 산정법 고찰, 석사학위논문, 명지대학교, pp. 1-57.
  2. 김기홍, 신방웅, 배우석, 오세욱(2003), 모래다짐말뚝으로 개량된 연약지반의 거동에 관한 원심모형실험-개량영역의 변위를 중심으로-, 대한토목학회논문집, Vol. 23, No. 4C, pp. 249-257.
  3. 김동은, 박현일, 이승래, 유상호(2008), 점토지반 조건 및 쇄석 말뚝 특성에 따른 응력분담비 산정, 한국지반공학회논문집, Vol. 24, No. 11, pp. 35-41.
  4. 김영남(2003), 관통 및 미관통 SCP 개량지반의 압밀거동 비교 연구, 석사학위논문, 수원대학교, pp. 1-109.
  5. 김준호(2005), 강성에 따른 쇄석다짐말뚝과 주변지반의 응력 집중비에 관한 연구, 석사학위논문, 한양대학교, pp. 1-51.
  6. 배우석, 오세욱, 신방웅(2006), 모래다짐말뚝으로 개량된 복합 지반의 거동에 관한 원심모형실험-응력집중을 중심으로-, 대한토목학회논문집, Vol. 26, No. 1C, pp. 19-24.
  7. 신현영(2005), 저치환율 SCP 복합지반의 거동 해석, 박사학위논문, 중앙대학교, pp. 1-241.
  8. 유상호, 박현일, 임종철, 박이근(2009), SCP 복합지반 침하거동예측을 위한 새로운 침하모델의 개발, 한국지반공학회논문집, Vol. 25, No. 8, pp. 23-32.
  9. 유승경(2003a), 저치환 모래다짐말뚝에 의한 복합지반의 응력 분담거동에 대한 실험적 연구, 한국지반공학회논문집, Vol. 19, No. 5, pp. 253-261.
  10. 유승경(2003b), 저치환 SCP에 의한 복합지반의 압밀과정중에 발생하는 응력분담거동과 그 메커니즘, 한국지반공학회논문집, Vol. 19, No. 5, pp. 301-310.
  11. 이민희, 최용규, 임종철, 황근배(2003), 현장재하시험을 통한 쇄석다짐말뚝의 응력분담에 관한 연구, 한국지반공학회논문집, Vol. 19, No. 6, pp. 107-114.
  12. 정길수(2005), 하중재하방법에 따른 SCP복합지반의 거동특성, 박사학위논문, 강원대학교, pp. 1-133.
  13. 한국해양연구원(2001), 모래다짐말뚝과 쇄석말뚝의 설계 및 시공지침서, 해양수산부, pp. 1-69.
  14. 해양수산부(1999), 대수심 방파제 및 연약지반 관련기술(II), 한국해양연구소, pp. 1-299.
  15. Barksdale, R. D., and Bachus, R. C.(1983), Design and Construction of Stone Columns-Vol. I, Report No. FHWA/RD-83/026, FHWA, Washington D.C, pp. 1-194.
  16. Bergado, D. T., Miura, N., Panichayatum, B. and Sampaco, C. L.(1988), Reinforcement of Soft Bangkok Clay Using Granular Piles, Proceedings of International Geotechnical Symposium on Theory and Practice of Earth Reinforcement, Balkema, Rotterdam, Netherlands, pp. 179-184.
  17. Craig, W. H. and Bujang, B. K.(1994), Simulation of a Sand Column Trial Embankment, Proceedings of the International Conference Centrifuge 94, Balkema, Rotterdam, Netherlands, pp. 561-566.
  18. Craig, W. H. and Rowe, P. W.(1984), Operation of Geotechnical Centrifuge from 1970 to 1979, Geotechnical Testing Journal, Vol. 4, No. 1, pp. 19-25.
  19. Huat, B.B.K. and Craig, W.H.(1994), Simulation of a Trial Embankment Structure in Malaysia, Proceedings of the International Conference Centrifuge 94, Balkema, Rotterdam, Netherlands, pp. 51-57.
  20. Jung, J. B.(1999), Study on Consolidation Behavior of Clay Ground Improved by the Partly Penetrated Sand Compaction Piles, Ph. D dissertation, Hiroshima University, pp. 153-155.
  21. Katsumi, K. and Masaaki, T.(1990), Practical Formula for the Composite Ground Improved by Sand Compaction Pile Method, Technical Note of the Port and Harbour Research Institute Ministry of Transport, Japan, No. 669, pp. 44-45.
  22. Kimura, T., Nakase, A., Kusakabe, O. and Saitoh, K.(1985), Behavior of Soil Improved by Sand Compaction Pile Driving, Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, AA Balkema, San Francisco, USA, Vol. 2, pp. 1109-1112.
  23. Lee, F. H., Ng, Y. W. and Yong, K. Y.(2001), Effects of Installation on Sand Compaction Piles in Clay in the Centrifuge, Geotechnical Testing Journal, Vol. 24, No. 3, pp. 314-323. https://doi.org/10.1520/GTJ11350J
  24. Murayama, S.(1957), Improvement of Soft Ground by Sand Compaction Pile, Conference Papers of Osaka Construction Works, pp. 1-17.
  25. Ng, Y. W., Lee, F. H. and Yong, K. Y.(1998), Development of an in-flight Sand Compaction Piles Installer, Proceedings of the International Conference Centrifuge 98, Balkema, Tokyo, Japan, pp. 837-843.
  26. Priebe, H. J.(1976), Estimating Settlements in a Gravel Column Consolidated Soil, Die Bautechnik 53, German, pp. 160-162.
  27. Shinsha, H., Takata, K., Kurumada, Y., and Fuji, N.(1991), Centrifuge Model Tests on Clay Ground Partly Improved by S.C.P, Proceedings of the International Conference Centrifuge 91, Rotterdam, pp. 311-318.
  28. Yagi, N., Enoki, M., Yatable, R., Tasaka, Y. and Takata, T. (1987), Consolidation on Initial Stress State of Composite Ground, The 22th Conference of Japanese Symposium of Soil Mechanics and Foundation Engineering, pp. 1801-1802.
  29. Yamaguchi, H., and Murakami, Y.(1977), On Stress Distribution of Composite Ground, The 11th Conference of Japanese Symposium of Soil Mechanics and Foundation Engineering, pp. 951-952.