DOI QR코드

DOI QR Code

Electrochemical Properties and Fabrication of Conjugated System Conducting Oligomer Self-assembled Monolayer

공액구조 전도성 올리고머 자기조립단분자막의 제작 및 전기화학적 특성

  • Min, Hyun Sik (Department of Chemistry & Biomolecular Engineering, Sogang University) ;
  • Lee, Tae Yeon (Department of Chemistry & Biomolecular Engineering, Sogang University) ;
  • Oh, Se Young (Department of Chemistry & Biomolecular Engineering, Sogang University)
  • 민현식 (서강대학교 화공생명공학과) ;
  • 이태연 (서강대학교 화공생명공학과) ;
  • 오세용 (서강대학교 화공생명공학과)
  • Received : 2011.08.10
  • Accepted : 2011.09.15
  • Published : 2011.10.10

Abstract

We have synthesized a high electrically conductive 4-(2-(4-(acetylthio)phenyl)ethynyl)benzoic acid (APBA) with a conjugated aromatic structure as a bio fix linker, and then fabricated APBA self-assembled monolayer (SAM) with a self-assembly technique. The structure of the prepared APBA SAM was studied and electrochemical properties of APBA SAM immobilized with a ferrocene molecule were investigated. Also, we have examined the molecular orientation and oxidation-reduction redox characteristics of the mixed SAM consisting of APBA and butanethiol (BT) with a X-ray photo electron spectroscopy (XPS) and cyclicvoltammetry, respectively. Electrochemical activity of the mixed SAM was increased with increasing the mixed time. Especially, the maximum redox current was obtained at a mixed time of 36 hrs.

바이오 분자의 고정 링커로 전기전도도가 높은 방향족 공액구조의 4-(2-(4-(acetylthio)phenyl)ethynyl)benzoic acid (APBA) 분자를 합성한 후, APBA 자기조립 단분자막을 제작하였다. 제작한 APBA 자기조립 단분자막의 구조를 분석하였고, 페로센으로 고정화시킨 APBA의 자기조립 단분자막의 전기화학적 특성을 조사하였다. 부탄티올 단분자막에 APBA를 삽입시켜 혼합 단분자막을 제조하여 XPS로 금 기판에 대한 혼합 단분자막의 수직 배향성을 조사하였다. 또한, APBA 혼합 시간에 따른 APBA와 부탄티올(BT) 혼합 단분자막에 페로센을 고정화하여 전기화학적 산화 환원 특성을 조사하였다. 혼합 단분자막의 전기화학적 활성은 혼합 시간의 증가에 따라 증가하였고, 부탄티올 단분자막 기판을 APBA 용액에 36 h 침지시켰을 때 가장 높은 페로센 분자의 산화 환원 전류값을 얻었다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP), 한국연구재단

References

  1. J. C. Love, L. A. E stroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev., 105, 103 (2005).
  2. F.-R. F. Fan, J. Yang, L. Cai, D. W. Price Jr., S. M. Dirk, D. V. Kosynkin, Y. Yao, A. M. Rawlett, J. M. Tour, and A. Bard, J. Am. Chem. Soc., 124, 5550 (2002). https://doi.org/10.1021/ja017706t
  3. L. A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin, L. Jone II, D. L. Allera, J. M. Tour, and P. S. Weiss, Science, 271, 1705 (1996). https://doi.org/10.1126/science.271.5256.1705
  4. J. G. Kushmerick, J. Naciri, J. C. Yang, and R. Shashidhar, Nano Lett., 3, 897 (2003). https://doi.org/10.1021/nl034201n
  5. D. J. Wold and C. D. Frisbie, J. Am. Chem. Soc., 122, 2970 (2000). https://doi.org/10.1021/ja994468h
  6. D. J. Wold and C. D. Frisbie, J. Am. Chem. Soc., 123, 5549 (2001). https://doi.org/10.1021/ja0101532
  7. D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, J. Phys. Chem. B., 106, 2813 (2002). https://doi.org/10.1021/jp013476t
  8. S. Y. Oh, H. S. Jie, H. S. Choi, and J. W. Choi, Int. J. Nanosci., 1, 611 (2002). https://doi.org/10.1142/S0219581X02000759
  9. S. Y. Oh, H. S. Choi, H. S. Jie, and J. K. Park, Mat. Sci. Eng., C 24, 91 (2004).
  10. S. Y. Lee and S. J. Lee, J. Jung, Ind. Eng. Chem., 9, 9 (2003).
  11. S. Y. Oh, H. S. Choi, H. J. Kim, and J. K. Park, Polymer (Korea), 29, 331 (2005).
  12. N. Nishida, M. Hara, H. Sasabe, and W. Knoll, Jpn. J. Appl. Phys., 36, 2379 (1997). https://doi.org/10.1143/JJAP.36.2379
  13. T. Ishida, W. Mizutani, H. Tokumoto, N. Choi, U. Akiba, and M. Fujihira, J. Vac. Sci. Technol. A., 18, 1437 (2000). https://doi.org/10.1116/1.582477