DOI QR코드

DOI QR Code

Preparation of Magnesium Oxide Nanowires from a Magnesium Foil

마그네슘 금속으로부터의 산화마그네슘 나노와이어 제조

  • Lee, Byung Gun (Department of Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemical Engineering, Inha University)
  • 이병건 (인하대학교 화학공학과) ;
  • 최진섭 (인하대학교 화학공학과)
  • Received : 2011.07.29
  • Accepted : 2011.08.12
  • Published : 2011.10.10

Abstract

Herein, we fabricated magnesium oxalate nanostructures by chemical etching of a magnesium foil in alcoholic solvents containing acidic media. Interestingly, we could obtain magnesium oxalate nanowires in ethanolic oxalic acid. Growth mechanism for magnesium oxalate nanowires was investigated in terms of etching time. Annealing conditions were determined from TGA results. Magnesium oxalate nanowires were converted to magnesium oxide nanowires by thermal treatment and the magnesium oxide nanowires were examined by FE-SEM and FT-IR measurement.

본 실험에서는 옥살산과 알코올계 용매를 사용하여 마그네슘 호일의 화학적 식각에 의해서 마그네슘 옥살레이트(Magnesium oxalate) 나노구조를 제조하였다. 알코올계 용매 중 에탄올 용매에서 마그네슘 옥살레이트 나노와이어를 얻을 수 있었다. 시간에 따른 나노와이어의 형성 과정을 살펴보았고, FE-SEM을 통하여 형상을 살펴보았다. TGA 분석을 통하여 열처리 조건을 결정하였다. 열처리를 통하여 마그네슘 옥살레이트 나노와이어에서 산화마그네슘(MgO) 나노와이어로 전환시켰고, 이를 FE-SEM과 FT-IR을 통하여 확인하였다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. R. Hahn, J. G. Brunner, J. Kunze, P. Schmuki, and S. Virtanen, Electrochem. Commun., 10, 288 (2008). https://doi.org/10.1016/j.elecom.2007.12.007
  2. S. Shen, P. S. Chow, F. Chen, and R. B. H. Tan, Chem. Pharm. Bull., 55, 985 (2007). https://doi.org/10.1248/cpb.55.985
  3. F. Haraguchi, K. Inoue, N. Toshima, S. Kobayashi, and K. Takatoh, J. Appl. Phys., 46, 796 (2007). https://doi.org/10.1143/JJAP.46.L796
  4. J. P. Boeuf, J. Phys. D: Appl. Phys., 36, 53 (2003).
  5. S. W. Liu, J. Weaver, Z. Yuan, W. Donner, C. L. Chen, J. C. Jiang, E. I. Meletis, W. Chang, S. W. Kirchoefer, J. Horwitz, and A. Bhalla, Appl. Phys. Lett., 87, 142905 (2005). https://doi.org/10.1063/1.2081131
  6. J. M. Phillips, J. Appl. Phys., 79, 1829 (1996). https://doi.org/10.1063/1.362675
  7. Y. Gu, D. Chen, X. Jiao, and F. Liu, J. Mater. Chem., 17, 1769 (2007). https://doi.org/10.1039/b614205b
  8. S. H. C. Liang and I. D. Gay, J. Catal., 101, 293 (1986). https://doi.org/10.1016/0021-9517(86)90256-3
  9. H. Tsuji, F. Yagi, H. Hattori, and H. Kita, J. Catal., 148, 759 (1994). https://doi.org/10.1006/jcat.1994.1262
  10. H. Fang, B. Hu, L. Wang, R. Lu, and C. Yang, Front. Chem. China, 3, 193 (2008). https://doi.org/10.1007/s11458-008-0037-9
  11. Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang, and Y. Qian, Chem. Mater., 13, 435 (2001). https://doi.org/10.1021/cm000607e
  12. H. Niu, Q. Yang, K. Tang, and Y. Xie, J. Nanoparticle Res., 8, 881 (2006). https://doi.org/10.1007/s11051-006-9138-x
  13. M. El-Shall, W. Slack, W. Vann, D. Kane, and D. Hanley, J. Phys. Chem., 98, 3067 (1998).
  14. J. S. Matthews, O. Just, B. Obi-Johnson, and W. S. Rees Jr., Chem. Vapour Deposition, 6, 129 (2000). https://doi.org/10.1002/(SICI)1521-3862(200006)6:3<129::AID-CVDE129>3.0.CO;2-X
  15. F. Khairallah and A. Glisenti, J. Mol. Catal. Chem., 274, 137 (2007). https://doi.org/10.1016/j.molcata.2007.04.039
  16. S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, and A. Gedanken, Adv. Funct. Mater., 15, 1708 (2005). https://doi.org/10.1002/adfm.200500029
  17. J. G. Brunner, R. Hahn, J. Kunze, and S. Virtanen, J. Electrochem. Soc., 156, C62 (2009). https://doi.org/10.1149/1.3042234
  18. M. A. Aramendia, V. Borau, C. Jimenz, J. M. Marinas, A. Porras, and F. J. Urbano, J. Mater. Chem., 6, 1943 (1996). https://doi.org/10.1039/jm9960601943
  19. Y. He, J. Wang, H. Deng, Q. Yin, and J. Gong, Ceram. Int., 34, 1399 (2008). https://doi.org/10.1016/j.ceramint.2007.03.034
  20. C. Yan, C. Sun, Y. Shi, and D. Xue, J. Cryst. Growth, 310, 1708 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.092
  21. P. Jeevanandam, R. S. Mulukutla, Z. Yang, H. Kwen, and K. J. Klabunde, Chem. Mater., 19, 5395 (2007). https://doi.org/10.1021/cm070666t
  22. Y. Yan, L. Zhou, J. Zhang, H. Zeng, Y. Zhang, and L. Zhang, J. Phys. Chem. C, 112, 10412 (2008). https://doi.org/10.1021/jp712149g
  23. Z. Zhou, Q. Sun, Z. Hu, and Y. Deng, J. Phys. Chem. B, 110, 13387 (2006). https://doi.org/10.1021/jp0612228
  24. S. J. Kim, Y. T. Kim, and J. Choi, J. Cryst. Growth, 312, 2946 (2010). https://doi.org/10.1016/j.jcrysgro.2010.06.029
  25. I. Jung, J. Choi, and Y. Tak, J. Mater. Chem., 20, 6164 (2010). https://doi.org/10.1039/c0jm00279h
  26. L. D. Site, A. Alavi, and R. M. Lynden-Bell, J. Chem. Phys., 113, 3344, (2000). https://doi.org/10.1063/1.1287276
  27. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, p. 206, Wiley, London.
  28. M. Sharma and P. Jeevanandam, J. Alloys Compounds, 509, 7881 (2011). https://doi.org/10.1016/j.jallcom.2011.04.151