DOI QR코드

DOI QR Code

Synthesis of Pt-Bi/Carbon Electrodes by Reduction Method for Direct Methanol Fuel Cell

환원법에 의한 직접 메탄올 연료전지(DMFC)용 Pt-Bi/Carbon 전극제조

  • Kim, Kwan Sung (Department of Chemical Engineering, Inha University) ;
  • Kim, Min Kyung (Department of Chemical Engineering, Inha University) ;
  • Noh, Dong Kyun (Department of Chemical Engineering, Inha University) ;
  • Tak, Yongsug (Department of Chemical Engineering, Inha University) ;
  • Baeck, Sung-Hyeon (Department of Chemical Engineering, Inha University)
  • 김관성 (인하대학교 화학공학과) ;
  • 김민경 (인하대학교 화학공학과) ;
  • 노동균 (인하대학교 화학공학과) ;
  • 탁용석 (인하대학교 화학공학과) ;
  • 백성현 (인하대학교 화학공학과)
  • Received : 2011.06.17
  • Accepted : 2011.08.09
  • Published : 2011.10.10

Abstract

Pt-Bi/C catalysts supported on carbon black with various Pt/Bi ratios were synthesized by a reduction method. Chloroplatinic acid hydrate ($H_2PtCl_6{\cdot}xH_2O$) and bismuth (III) nitrate pentahydrate ($Bi(NO_3)_3{\cdot}5H_2O$) were used as precursors for Pt and Bi, respectively. Before loading metal on carbon, heat treatment and pretreatment of carbon black in an acidic solution was conducted to enhance the degree of dispersion. The physical property of the synthesized catalysts was investigated by X-ray diffraction and X-ray photoelectron spectroscopy. The XRD pattern of untreated Pt-Bi/C catalyst showed BiPt and $Bi_2Pt$ peaks in addition to Pt peaks. These results imply that Bi atoms were incorporated into the Pt crystal lattice by Pt-Bi alloy formation. The catalytic activity for methanol oxidation was measured using cyclic voltammetry in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. The addition of proper amount of Bi was found to significantly improve catalytic activity for methanol oxidation. The catalytic activity for methanol oxidation was closely related to the stability between electrode and electrolyte. In order to investigate the stability of catalysts, chronoamperometry analysis was carried out in the same solution at 0.6 V.

다양한 비율의 Pt와 Bi를 carbon black (Vulcan XC-72R)에 담지시킨 Pt-Bi/C 촉매를 환원법을 이용하여 합성하였다. Pt와 Bi의 전구체로는 염화백금산($H_2PtCl_6{\cdot}xH_2O$)과 비스무스트리질산($Bi(NO_3)_3{\cdot}5H_2O$) 수용액을 각각 사용하였으며, 금속을 carbon에 담지하기 전, 금속물질의 분산도를 높여주기 위해 열처리와 산처리를 수행한 carbon black을 사용하였다. XRD (X-ray Diffraction) 분석과 XPS (X-ray Photoelectron Spectroscopy) 분석을 통하여 Pt-Bi/C 촉매 내에 Pt와 Bi가 소성시키기 전에는 BiPt 혹은 $Bi_2Pt$로 존재하지만 $500^{\circ}C}$에서 소성을 한 후에는 Pt 격자구조 안으로 Bi가 침투하여 alloy을 형성하는 것을 확인하였다. 합성한 전극의 메탄올 산화반응은 전기화학분석장치(Potentiostat; Princeton applied research, VSP)를 사용하여 0.5 M $CH_3OH$와 0.5 M $H_2SO_4$의 혼합수용액에서 순환전압법(cyclic voltammetry, CV)을 이용해 측정하였다. 메탄올 산화에 대한 전기화학적 촉매 활성을 평가한 결과 적절한 양의 Bi를 첨가한 경우, 메탄올 산화반응에 대한 높은 촉매활성을 나타냄을 확인하였다. 메탄올 산화에 대한 활성은 전극과 전해질 사이의 안정성과 밀접한 관련이 있다. 정전압법(Chronoamperometry, CA)을 이용하여 전극의 안정성을 평가한 결과 메탄올 산화반응에 높은 활성을 나타내는 촉매일수록 전극의 안정성도 높은 것을 확인하였다.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy and Resources Technology Evaluation and Planning (KETEP)

References

  1. W. Li, Q. Xin, and Y. Yan, Int. J. Hydrogen Energy, 35, 2530 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.013
  2. A. Hamnett, Catalysis Today, 38, 445 (1997). https://doi.org/10.1016/S0920-5861(97)00054-0
  3. B. D. McNicol, D. A. J. Rand, and K. R. Willaiams, J. Power Sources, 83, 15 (1999). https://doi.org/10.1016/S0378-7753(99)00244-X
  4. S. Wasmus and A. Kuver, J. Electroanal. Chem., 461, 14 (1999). https://doi.org/10.1016/S0022-0728(98)00197-1
  5. X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld, J. Power Sources, 86, 111 (2000). https://doi.org/10.1016/S0378-7753(99)00407-3
  6. A. S. Aricò, S. Srinivasan, and V. Antonucci, Fuel Cells, 2, 133 (2001).
  7. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin, J. Phys. Chem., 107, 6292 (2003). https://doi.org/10.1021/jp022505c
  8. J. S. Lee, K. I. Han, S. O. Park, H. N. Kim, and H. S. Kim, Electrochim. Acta, 50, 807 (2004). https://doi.org/10.1016/j.electacta.2004.01.116
  9. C. H. Pak, S. J. Lee, S. A. Lee, and H. Chang, Korean J. Chem. Eng., 22, 214 (2005). https://doi.org/10.1007/BF02701487
  10. M. Kimberly, G. K. Mcgrath, S. Prakash, and G. A. Olah, J. Ind. Eng. Chem., 10, 1063 (2004).
  11. P. Statti, Z. Poltarzewski, V. Alderucci, G. Maggio, and N. Giordano, Int. J. Hydrogen Energy, 19, 523 (1994). https://doi.org/10.1016/0360-3199(94)90007-8
  12. S. C. Hall, V. Subramanian, G. Teeter, and B. Rambabu, Solid State Ionics, 175, 809 (2004). https://doi.org/10.1016/j.ssi.2004.08.030
  13. H. Wang, Z. Jusys, and R. J. Behm, J. Power Sources, 154, 351 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.034
  14. F. Delime, J. M. Leger, and C. Lamy, J. Appl. Electrochem., 29, 1249 (1999). https://doi.org/10.1023/A:1003788400636
  15. G. C. Li and P. G. Pickup, Electrochim. Acta, 52, 1033 (2006). https://doi.org/10.1016/j.electacta.2006.07.003
  16. Y. J. Jung, S. Kim, S. J. Park, and J. M. Kim, Colloids Surf. A: Physicochem. Eng. Asp., 167, 313 (2008).
  17. C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. T. K. Baker, J. Phys. Chem. B, 105, 1115 (2001).
  18. S. Ueda, M. Eguchi, K. Uno, Y. Tsutsumi, and N. Ogawa, Solid State Ionics, 177, 175 (2006). https://doi.org/10.1016/j.ssi.2005.10.019
  19. G. S. Chai, S. B. Yoon, J. S. Yu, J. H. Choi, and Y. E. Sung, J. Phys. Chem. B, 108, 7074 (2004). https://doi.org/10.1021/jp0370472
  20. Y. Lin, X. Cui, C. Yen, and C. M. Wai, J. Phys. Chem. B, 109, 14410 (2005). https://doi.org/10.1021/jp0514675
  21. X. Li, G. Chen, J. Xie, L. Zhang, D. Xia, and Z. Wu, J. Electrochem. Soc., 157, B580 (2010). https://doi.org/10.1149/1.3309725
  22. J.-S. Do, Y.-T. Chen, and M.-H. Lee, J. Power Sources, 172, 623 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.020
  23. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradly, and P. J. Boul, Science, 280, 1253 (1998). https://doi.org/10.1126/science.280.5367.1253
  24. B. C. Satishkumar, E. M. Vogl, A. Govindaraj, and C. N. R. Rao, J. Phys. D, 29, 3173 (1996). https://doi.org/10.1088/0022-3727/29/12/037
  25. B. C. Satishkumar, A. Govindaraj, J. Mofokeng, G. N. Shbbanna, and C. N. R. Rao, J. Phys. B: At. Mol. Opt. Phys., 29, 4925 (1996). https://doi.org/10.1088/0953-4075/29/21/006
  26. F. Dawood, B. M. Leonard, and R. E. Schaak, Chem. Mater., 19, 4545 (2007). https://doi.org/10.1021/cm071147t
  27. C. Jeyabharathi, J. Mathiyarasu, and K. L. N. Phani, J. Appl. Electrochem., 39, 45 (2009). https://doi.org/10.1007/s10800-008-9638-8
  28. A. V. Tripkovic, K. Dj. Popovic, R. M. Stevanovic, R. Socha, and A. Kowal, Electrochemistry Communications, 8, 1492 (2006). https://doi.org/10.1016/j.elecom.2006.07.005
  29. D. M. Han, Z. P. Guo, R. Zeng, C. J. Kim, Y. Z. Meng, and H. K. Liu, Int. J. Hydrogen Energy, 34, 2426 (2009). https://doi.org/10.1016/j.ijhydene.2008.12.073
  30. K. J. J. Mayrhofer, J. C. Meier, S. J. Ashton, G. K. H. Wiberg, F. Kraus, M. Hanzlik, and M. Arenz, Electrochemistry Communications, 10, 1144 (2008). https://doi.org/10.1016/j.elecom.2008.05.032
  31. Z. Siroma, K. Ishii, K. Yasuda, M. Inaba, and A. Tasaka, J. Power Sources, 171, 524 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.016
  32. A. S. AriCo, S. Srinivasan, and V. Antonucci, Fuel Cells, 1, 133 (2001). https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  33. P. Liu and J. K. Norskov, Fuel Cells, 1, 192 (2001). https://doi.org/10.1002/1615-6854(200112)1:3/4<192::AID-FUCE192>3.0.CO;2-M
  34. T. Frelink, W. Visscher, and J. A. R. van Veen, Surf. Sci., 335, 353 (1995). https://doi.org/10.1016/0039-6028(95)00412-2
  35. G. Samjeske, H. Wang, T. Loffler, and H. Baltruschat, Electrochim. Acta, 47, 3681 (2002). https://doi.org/10.1016/S0013-4686(02)00338-9