DOI QR코드

DOI QR Code

A Study for Estimation of Chlorophyll-a in an Ungauged Stream by the SWMM and an Artificial Neural Network

SWMM과 인공신경망을 이용한 미 계측 하천의 클로로필a 추정에 관한 연구

  • Kang, Taeuk (Department of Civil Engineering, Pukyong National University) ;
  • Lee, Sangho (Department of Civil Engineering, Pukyong National University) ;
  • Kim, Ilkyu (Division of Environmental System Engineering, Pukyong National University) ;
  • Lee, Namju (Civil Engineering, Kyungsung University)
  • 강태욱 (부경대학교 토목공학과) ;
  • 이상호 (부경대학교 토목공학과) ;
  • 김일규 (부경대학교 환경공학과) ;
  • 이남주 (경성대학교 토목공학과)
  • Received : 2011.06.09
  • Accepted : 2011.08.30
  • Published : 2011.09.30

Abstract

Chlorophyll-a is a major water quality indicator for an algal bloom in streams and lakes. The purpose of the study is to estimate chlorophyll-a concentration in tributaries of the Seonakdonggang by an artificial neural network (ANN). As the tributaries are ungauged streams, a watershed runoff and quality model was used to simulate water quality parameters. The tributary watersheds include urban area and thus Storm Water Management Model (SWMM) was used to simulate TN, TP, BOD, COD, and SS. SWMM, however, can not simulate chlorophyll-a. The chlorophyll-a series data from the tributaries were estimated by the ANN and the simulation results of water quality parameters using SWMM. An assumption used is as follows: the relation between water quality parameters and chlorophyll-a in the tributaries of the Seonakdonggang would be similar to that in the mainstream of the Seonakdonggang. On the assumption, the measurement data of water quality and chlorophyll-a in the mainstream of the Seonakdonggang were used as the learning data of the ANN. Through the sensitivity analysis, the learning data combination of water quality parameters was determined. Finally, chlorophyll-a series were estimated for tributaries of the Seonakdonggang by the ANN and TN, TP, BOD, COD, and temperature data from those streams. The relative errors between the estimated and measured chlorophyll-a were approximately 40 ~ 50%. Though the errors are somewhat large, the estimation process for chlorophyll-a may be useful in ungauged streams.

Keywords

References

  1. 낙동강물환경연구소(2009). 서낙동강 유역 오염도 현황조사 및 수질개선방안 수립. 국립환경과학원.
  2. 신성교, 박청길, 이수웅(1996). 낙동강에서 chlorophyll-a와 BOD의 상관관계. 수질보전 한국물환경학회지, 12(4), pp. 369-375.
  3. 신현석, 최시중, 김중훈(1998). 신경망을 이용한 도시유역 유출 및 비점원 오염물 배출 모형화 연구. 대한토목학회 논문집, 18(II-5), pp. 437-448.
  4. 안상진, 연인성, 한양수, 이재경(2001). 신경망 모형을 적용 한 금강 공주지점의 수질예측. 한국수자원학회논문집, 34(6), pp. 701-711.
  5. 오창렬, 박성천, 이한민, 표영평(2002). 신경망을 이용한 영산 강의 수질예측. 대한토목학회논문집, 22(3-B), pp. 371-382.
  6. 오창렬, 진영훈, 김동렬, 박성천(2008). 유출량 및 수질자료 를 이용한 인공신경망 예측모형 개발에 관한 연구. 한국수자원학회논문집, 41(10), pp. 1035-1044.
  7. 장호석, 고재윤, 송재덕, 김대승, 김인탁(2009). 낙동강 하류의 클로로필a 분석. 2009공동 추계학술발표회 논문집, 대한상하수도학회.한국물환경학회, pp. 665-666.
  8. 최정민(2008). WASP 7.2와 신경망모형을 이용한 낙동강의 수질모의 및 예측. 석사학위논문, 부경대학교.
  9. Donigian, A. S. Jr., Imhoff, J. C., Bicknell, B. R., and Kittle, J. L. Jr. (1984). Application guide for Hydrological Simulation Program-Fortran (HSPF). EPA-600/3-84-065, U.S. Environmental Protection Agency, Athens, Georgia.
  10. Karul, C., Soyupak S., Cilesiz, A. F., Akbay, N., and Germen, E. (2000). Case studies on the use of neural networks in eutrophication modeling. Ecological Modelling, 134, pp. 145-152. https://doi.org/10.1016/S0304-3800(00)00360-4
  11. Kuo, J., Hsieh, M., Lung, W., and She, N. (2007). Using artificial neural network for reservoir eutriphication prediction. Ecological Modelling, 200, pp. 171-177. https://doi.org/10.1016/j.ecolmodel.2006.06.018
  12. Scardi, M. and Harding, L. W. Jr. (1999). Developing an empirical model of phytoplankton primary production: a neural network case study. Ecological Modelling, 120, pp. 213-223. https://doi.org/10.1016/S0304-3800(99)00103-9
  13. Wang, T., Tan, C., Chen, L., and Tsai, Y. (2008). Applying artificial neural networks and remote sensing to estimate chlorophyll-a concentration in water body. '08. Second International Symposium on Intelligent Information Technology Application, IEEE Computer Society, pp. 540-544.