DOI QR코드

DOI QR Code

Evaluation of COD Utilization for Biological Nutrient Removal with dPAO in SBBR-MSBR System

Denitrifying PAO와 SBBR-MSBR을 이용한 생물학적영양소제거공정에서 탄소원 절약에 대한 연구

  • Lee, Hansaem (Department of Environmental Engineering, Korea University) ;
  • Han, Jonghun (Korea Amy Academy at Yeong Cheon) ;
  • Yun, Zuwhan (Department of Environmental Engineering, Korea University)
  • 이한샘 (고려대학교 대학원 환경공학과) ;
  • 한종훈 (육군3사관학교 화학환경과학과) ;
  • 윤주환 (고려대학교 대학원 환경공학과)
  • Received : 2011.05.30
  • Accepted : 2011.08.25
  • Published : 2011.09.30

Abstract

The combined system of sequencing batch biofilm reactor (SBBR) and membrane SBR (MSBR) was operated with sewage to evaluate the COD utilization for biological nutrient removal (BNR). The SBBR was operated for nitrification reactor, while denitrifying PAO (dPAO) was cultivated in MSBR with anaerobic-anoxic operation. In the SBBR and MSBR system, the enhanced biological phosphorus removal (EBPR) was successfully achieved with higher N removal. The COD utilization in combined SBBR-MSBR system was significantly reduced compared to ordinary BNR (up to 3.1 g SCOD/g (N+P) and 1.6 g SCOD/g (N+P) with different C/N/P ratio). The results suggest that a dPAO process could effectively reduce carbon energy (=COD) requirement. The combination of oxic-SBBR and anaerobic-anoxic MSBR for dPAO utilization could be an attractive alternative to upgrade the process performance in weak sewage.

Keywords

References

  1. 최의소, 이영행, 길경익, 윤주환(2000). 아질산화-탈질 반응 을 이용한 혐기성 소화조 상징액의 질소 제거. 수질보전 한국물환경학회지, 16(2), pp. 265-273.
  2. 환경부(2010). 하수도 통계.
  3. APHA, WEF and ASCE (2005). Standard Methods for the Examination of Water and Wastewater. 21st Eds., WashingtonDC, USA.
  4. Bortone, G., Malaspina, F., Stante, L., and Tilche, A. (1994). Biological nitrogen and phosphorus removal in an anaerobic/ anoxic sequencing batch reactor with separated biofilm nitrification. Wat. Sci. Tech., 30(6), pp. 303-313.
  5. Bortone, G., Saltarelli, R., Alonso, V., Sorm, R., Wanner, J., and Tilche, A. (1996). Biological anoxic phosphorus removal-The DEPHANOX process. Wat. Sci. Tech., 34(1-2), pp. 119-228. https://doi.org/10.1016/0273-1223(96)00501-X
  6. Choi, E., Park, J. B., Yun, Z., and Min, K. S. (2008). Design implications on denitrifying PAO in BNR plant. KSCE Journal of Civil Engineering, 12(1), pp. 9-14. https://doi.org/10.1007/s12205-008-8009-7
  7. Chung, J., Kim, Y., Lee, D. J., Shim, H., and Kim, J. O. (2006). Characteristics of denitrifying phosphate accumulating organism in an anaerobic-intermittently aerobic process. Environmental Engineering Science, 23(6), pp. 981-993. https://doi.org/10.1089/ees.2006.23.981
  8. Han, J., Lee, H., Ko, K. B., Choi, E., and Yun, Z. (2009). Characteristics of Nitrogen and Phosphorus Removal by dPAO in SBR and SBBR, Proc. 3rd IWA-ASPIRE Conference, Oct 18-22, 2009 Taipei, Taiwan.
  9. Hao, X., Heijnen, J. J., Qian, Y., and van Loosdrecht, M. C. M. (2001). Contribution of P-bacteria in biological nutrient removal processes to overall effects on the environment. Wat. Sci. Tech., 44(1), pp. 67-76.
  10. Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M., Marais, G., and Van Loosdrecht, M. C. M. (1999). Activated sludge model NO.2, ASM2d, Wat. Sci. Tech., 39(1), pp. 165-182. https://doi.org/10.1016/S0273-1223(98)00829-4
  11. Henze, M., Harremoes, P., Jansen, J. C., and Arvin, E. (1995). Wastewater treatment: Biological and chemical processes. Springer, Germany.
  12. Kim, M. and Nakhla, G. (2009). Phosphorus fractionation in membrane-assisted biological nutrient removal process. Chemosphere, 76, pp. 1283-1287. https://doi.org/10.1016/j.chemosphere.2009.06.014
  13. Kuba, T., van Loosdrecht, M. C. M., and Heijnen, J. J. (1996). Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of Denitrifying Dephosphatation and Nitrification in a two-sludge system. Wat. Res., 30(7), pp. 1702-1710. https://doi.org/10.1016/0043-1354(96)00050-4
  14. Kuba, T., van Loosdrecht, M. C. M., Brandse, F. A., and Heijnen, J. J. (1997). Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Wat. Res., 31(4), pp. 777-786. https://doi.org/10.1016/S0043-1354(96)00370-3
  15. Lee, D. S., Jeon, C. O., and Park, J. M. (2001). Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Water Res., 35(16), pp. 3968-3976. https://doi.org/10.1016/S0043-1354(01)00132-4
  16. Lee, H., Han, J., and Yun, Z. (2009), Biological Nitrogen and Phosphorus Removal in UCT-type MBR Process. Wat. Sci. Tech., 59(11), pp. 2093-2099. https://doi.org/10.2166/wst.2009.242
  17. Lee, J., Kim J., Lee, C., Yun, Z., and Choi, E. (2005). Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism. Wat. Sci. Tech., 52(10-11), pp. 569-578.
  18. Makinia, J., Rosenwinkel, K. H., Swinarski, M., and Dobiegala, E. (2006). Experimental and model-based evaluation of the role of denitrifying polyphosphate accumulating organisms at two large scale WWTPs in northern poland. Wat. Sci. Tech., 54(8), pp. 73-81. https://doi.org/10.2166/wst.2006.711
  19. Neethling, J., Stensel, D., Parker, D., Bott, D., Murthy, S., Pramanik, A., and Clark, D. (2009). What is limit of technology (LOT): a rational and quantitative approach. Wat. Env. Fed., pp. 5917-5930.
  20. Parker, D., Bott, C. B., Neething, J. B., Pramanik, A., and Murthy, S. (2009). WEF/WERF cooperative study of BNR plants approaching the limit of technology: I. What can we learn about the technologies. Proc. of 82nd Water Environment Federation Technical Exhibition and Conference 2009, 4543-4559, October 10-14, Orlando, Florida, USA.
  21. Peric, M., Neupane, D., Stinson, B., Locke, E., Kharkar, S., Passarelli, N., Sultan, M., Shin, G., Murthy, S., Bailey, W., Carr, J., and Minassian, R. (2009). Phosphorus requirements in a post denitrification MBBR at a combined limit of technology nitrogen and phosphorus plant. Wat. Env. Fed., pp. 2231-2245.
  22. Schenkelberg, K. and Horton, B. (2009). Application of membrane bioreactor technology to meet stringent load limits on Virginia's Eastern Shore. Wat. Env. Fed., pp. 2203-2215.
  23. Shoolroy, L. and Mallett, C. (2009). WWTP optimization to achieve effluent total phosphorus levels less than 0.15 mg/L without chemicals or filtration. Proc. of 82nd Water Environment Federation Technical Exhibition and Conference 2009, 4484-4500, October 10-14, Orlando, Florida, USA.
  24. Smolders, G. J. F., van der Meij, J., van Loosdrecht M. C. M., and Heijen, J. J. (1994). Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotech. Bioeng., 44, pp. 837-848. https://doi.org/10.1002/bit.260440709
  25. Smolders, G. J. F. (1995). A metabolic model of the biological phosphorus removal-stoichiometry, kinetics and dynamic behaviour. Ph. D. thesis, Delft Univ. of Tech.
  26. Stinson, B., Peric, m., Neupane, D., Laquidara, M., Locke, E., Murthy, S., Bailey, W., Kharkar, S., Passarelli, N., Derminassian, R., Carr, J., Sultan, M., Shin, G., Barnard, J., Daigger, G., Parker, D., Randall, C., and Wilson, T. (2009). Design and operating considerations for a post denitrification MBBR to achieve limit of technology effluent NOX < 1 mh/L and Effluent TP < 0.18 mg/L. Wat. Env. Fed., pp. 4357-4377.
  27. Toit, G. J. G., Ramphao, M. C., Parco, V., Wentzel, M. C., and Ekama, G. A. (2007). Design and performance of BNR activated sludge systems with flat sheet membranes for solid-liquid separation. Wat. Sci. Tech., 56(6), pp. 105-113. https://doi.org/10.2166/wst.2007.643
  28. Van Loosdrecht, M. C. M., Brandse, F. A., and De Vries, A. C. (1998). Upgrading of wastewater treatment processes for integrated nutrient removal the BCFS process. Wat. Sci. Tech., 37(9), pp. 209-217. https://doi.org/10.1016/S0273-1223(98)00290-X
  29. Vargas, M., Guisasola, A., Lafuente, J., Casas, C., and Baeza, J. A. (2008). On-line titrimetric monitoring of the anaerobicanoxic EBPR process. Wat. Sci. Tech., 57(8), pp. 1149-1154. https://doi.org/10.2166/wst.2008.140
  30. Vlekke, G. J. F. M. (1988). Biological phosphate removal from wastewater with oxygen or nitrate in sequencing batch reactors. Environmental Technology Letters, 9, pp. 791-796. https://doi.org/10.1080/09593338809384634
  31. Wang, Y. Y., Pan, M. L., Peng, Y. Z., and Wang, S. Y. (2007). Characteristics of anoxic phosphorus removal in sequence batch reactor. Journal of Environmental Sciences, 19, pp. 776-782. https://doi.org/10.1016/S1001-0742(07)60130-2
  32. Wang, Y. Y., Peng, Y. Z., Li, T. W., Ozaki, M., Takigawa, A., and Wang, S. Y. (2004). Phosphorus removal under anoxic conditions in a continuous-flow A2N two sludge process. Wat. Sci. Tech., 50(6), pp. 37-44.
  33. Wilderer, P. A. (1992). Sequencing batch biofilm reactor technology. Harnessing biotechnology for the 21th century. M. R. Ladisch and A. Bose (eds.), Amer. Chem. Soc., pp. 475-479.
  34. Wingender, J., Neu, T. R., and Hlemming, H. C. (1999). Microbial Extracellular Polymeric Substances: Characterization, Structure and Function. Springer, Berlin.
  35. Yuan, Q. and Oleszkiewicz, J. (2009). Selection and enrichment of denitrifying phosphorus accumulating organisms in activated sludge, Proc. of 82nd Water Environment Federation Technical Exhibition and Conference 2009, 4330-4341, October 10-14, Orlando, Florida, USA.