DOI QR코드

DOI QR Code

Development of Estimation Indices for Refractory Organic Matter in the Han-River Basin using Organic Matter Parameters and Spectroscopic Characteristics

일반 유기물 항목과 분광특성을 이용한 한강수계 내 난분해성 물질 지표 제시

  • Lee, Bomi (Department of Environment and Energy, Sejong University) ;
  • Lee, Tae-Hwan (Department of Environment and Energy, Sejong University) ;
  • Hur, Jin (Department of Environment and Energy, Sejong University)
  • 이보미 (세종대학교 환경에너지융합학과) ;
  • 이태환 (세종대학교 환경에너지융합학과) ;
  • 허진 (세종대학교 환경에너지융합학과)
  • Received : 2011.05.11
  • Accepted : 2011.08.09
  • Published : 2011.09.30

Abstract

A long-term water quality monitoring in the Han River Basin reveals a consistent increasing trend for the concentration of refractory organic matter (R-OM) in major monitoring sites of the watershed. Because the determination of R-OM concentrations typically requires a long time of microbial incubation, it is essential to present the estimation indices for R-OM for an efficient watershed management. In this study, a number of surface water samples were classified into three groups, each of which were collected from Lake Paldang, rivers at rain and non-rain events, respectively. The corresponding R-OM concentrations were correlated with biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) concentrations as well as ultraviolet and fluorescence intensities of the filtered samples. Among the traditional organic matter parameters, TOC exhibited the highest correlation coefficient with the R-OM concentrations regardless of the types of the sample groups. The equations for conversing TOC into R-OM concentrations were finally suggested as $0.43{\times}TOC+1.12$, $0.44{\times}TOC+0.61$, $0.24{\times}TOC+1.28$ for river samples at rain and non-rain events, and lake samples, respectively. TOC-BOD(C), the values of the TOC concentrations subtracted by carbon-converted BOD concentrations, was a good index for estimating the absolute concentrations of R-OM. UV absorbance at 254 nm was well correlated with R-OM concentrations of river samples while fluorescence intensities at 350 nm showed an excellent relationship with R-OM concentration of the lake samples. Our results suggests that simple spectroscopic parameters could be applied for in-situ monitoring tool techniques in watersheds.

Keywords

References

  1. 국립환경과학원(2005). 한강수계 오염총량관리 대상물질 연구사업. 한강수계관리위원회.
  2. 김재구, 신명선, 장창원, 정성민, 김범철(2007). 한강수계 주요 하천과 호수 내 TOC와 DOC 분포 및 BOD와 COD의 산화율 비교. 수질보전 한국물환경학회지, 23(1), pp. 72-80.
  3. 김현철, 이석헌, 김경주, 유명진(2007). 한강원수로부터 분리된 수중휴믹물질의 계절적 분포와 분광학적 특성분석. 대한환경공학회지, 29(5), pp. 540-547.
  4. 손문호, Ismayil S. Zulfugarov, 권오섭, 문병용, 정익교, 이춘환, 이진애(2005). 수종 담수적조 원인종들의 형광특성과 적용연구. Algae, 20(2), pp. 133-120. https://doi.org/10.4490/ALGAE.2005.20.2.133
  5. 신재기, 황순진, 강찬근, 김호섭(2003). 하천형 저수지 팔당호의 육수학적 특성: 수문과 수환경 요인. Korean J. Limnol., 36, pp. 242-256.
  6. 유순주, 하성룡, 황종연, 김창수(2003). 금강 수계에서 소독 부산물 생성에 미치는 유기물 특성. 수질보전 한국물환경학회지, 19(6), pp. 707-713.
  7. 이태환, 이보미, 허진, 정명숙, 강태구(2010). 회귀식을 사용한 하수처리장 방류수 CODMn 농도의 총 유기탄소 및 난분해성 물질 농도 전환. 수질보전 한국물환경학회지, 26(6), pp. 969-975.
  8. 장창원, 김범철, 김재구, 김동환, 한지선(2006). 금강수계 유기물의 시.공간적 변동과 분해속도. 공동 추계학술발표회 논문집, 대한상하수도학회.한국물환경학회, pp. 706-714.
  9. 정가영, 박민혜, 허진, 이승윤, 신재기(2009). 기원별 용존 유기물의 분광특성 및 COD 산화율 비교. 수질보전 한국물환경학회지, 25(4), pp. 589-596.
  10. 정철우, 손희종, 신현준, 손인식(2007). 단신 : 막오염에 미치는 유기물 분자량 분포특성 및 화학적 구조특성. 한국화학공학회 화학공학, pp. 669-676.
  11. 허진, 신재기, 박성원(2006). 하천 및 호소 수질관리를 위한 용존 자연유기물질 형광특성 분석. 대한환경공학회지, 28(9), pp. 940-948.
  12. Aiken, G. (1993). Proceeding of the Workshop on NOM in Drinking Water. Chamonix, 37, pp. 19-22.
  13. Baker, A. (2001). Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environmental Science, & Technology, 35, pp. 948-953. https://doi.org/10.1021/es000177t
  14. Chen, W., Westeerhoff, P., Leenheer, J. A., and Booksh, K. (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, pp. 5701-5710.
  15. Chen, Z. Q., Hu, C. M., Comny, R. N., Muller-Karger, F., and Swarzenski, P. (2007). Colored dissolved organic matter in Tampa Bay, Florida. Marine Chemistry, 104(1-2), pp. 98-109. https://doi.org/10.1016/j.marchem.2006.12.007
  16. Chin, Y. P., Aiken, G. R., and Danielsen, K. M. (1997). Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environmental Science & Technology, 31(6), pp. 1630-1635. https://doi.org/10.1021/es960404k
  17. Hertkorn, N., Claus, H., Schmitt-Kopplin, P. H., Perdue, E. M., and Filip, Z. (2002). Utilization and transformation of aquatic humic substances by autochthonous microorganism. Environmental Science & Technology, 36, pp. 4334-4345. https://doi.org/10.1021/es010336o
  18. Hur, J., Chung, N. J., and Shin, J. K. (2007). Spectroscopic distribution of dissolved organic matter in a dam reservoir affected by turbid storm runoff. Environtal Monitoring and Assessment, 133, pp. 53-67. https://doi.org/10.1007/s10661-006-9559-0
  19. Hur, J., Hwang, S. J., and Shin, J. K. (2008). Using Synchronous fluorescence technique as a water quality monitoring tool for an urban river. Water, Air and Soil Pollution, 191, pp. 231-243. https://doi.org/10.1007/s11270-008-9620-4
  20. Hur, J. and Kong, D. S. (2008). Using synchronous fluorescence spectra to estimate biochemical oxygen demand (BOD) of urban rivers affected by treated sewage. Envrionmental Technology, 29(4), pp. 435-444.
  21. Inamdar, S., Rupp, J., and Mitchell, M. (2008). Differences in dissolved organic carbon and nitrogen responses to stormevent and ground-water conditions in a forested, glaciated watershed in wastern New York. Journal of the American Water Resources Association, 44(6), pp. 1458-1473. https://doi.org/10.1111/j.1752-1688.2008.00251.x
  22. Kalbitz, K., Schmerwitz, J., Schwesig, D., and Matzner, E. (2003). Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 113, pp. 273-291. https://doi.org/10.1016/S0016-7061(02)00365-8
  23. Khan, E., Babcock, R. W., Jongskul, S., Devadason, F. A., and Tuprakay, S. (2003). Determination of biodegradable dissolved organic carbon using entrapped mixed microbial cells. Water Research, 37, pp. 4981-4991. https://doi.org/10.1016/j.watres.2003.08.003
  24. Leenheer, J. A. and Croue, J. P. (2003). Characterizing aquatic dissolved organic matter. Environmental Science & Technology, 37(1), pp. 19A-26A.
  25. Nguyen, H. V. M., Hur, J., and Shin, H. S. (2010). Changes in spectroscopic and molecular weight characteristic of dissolved organic matter in a river during a storm event. Water, Air & Soil Pollution, 212, pp. 395-406. https://doi.org/10.1007/s11270-010-0353-9
  26. Nguyen, M. L, Westerhoff, P., Baker, L., Hu, Q., Esparza-Soto, M., and Sommerfeld, M. (2005). Characteristics and reactivity of algae-produced dissolved organic carbon. Journal of Environmental Engineering, 131(11), pp. 1574-1582. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:11(1574)
  27. Parlanti, E., Wörz, K., Geoffroy, L., and Lamotte, M. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31, pp. 1765- 1781. https://doi.org/10.1016/S0146-6380(00)00124-8
  28. Qualls, R. G. and Hanies, B. L. (1992). Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Science Society of America Journal, 56, pp. 578-586. https://doi.org/10.2136/sssaj1992.03615995005600020038x
  29. Sekaly, A. L. R., Mandal, R., Hassan, N. M., Murimboh, J., Chakrabarti, C. L., Back, M. H., Gregoire, D. C., and Schoreder, W. H. (1999). Effect of metal/fulvic acid mole ratios on the binding of Ni(II), Pb(II), Cu(II), and Al(III) by two well-characterized fulvic acids in aqueous model solutions. Analytica Chimica Acta, 402, pp. 211-221. https://doi.org/10.1016/S0003-2670(99)00534-6
  30. Servais, P., Garnier J., Demarteau, N., Brion, N., and Billen, G. (1999). Supply of organic matter and bactera to aquatic ecosystems through waste water effluent. Wat. Res. Elserier Science, 22, pp. 3521-3531.
  31. Shin, S. K., Song, K. O., and Park, C. K. (2000). Evaluation of autochthonous BOD caused by production of algae at different spatial and temporal scales in the eutrophic Nakdong river. 수질보전 한국물환경학회지, 16(3), pp. 365-375.
  32. Standard Method (2005). Biochemical Oxygen Demand 5210, pp. 5-2.
  33. Westerhoff, P., Chen, W., and Esparza, M. (2001). Fluorescence analysis of a standard fulvic acid and tertiary treated wastewater. Journal of Environmental Quality, 30(6), pp. 2037-2046. https://doi.org/10.2134/jeq2001.2037
  34. Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38(1), pp. 45-50. https://doi.org/10.1016/S0045-6535(98)00166-0