DOI QR코드

DOI QR Code

A META-SOFTWARE SYSTEM FOR ORTHOGONAL DESIGNS AND HADAMARD MATRICES

  • Kotsireas, Ilias S. (Wilfrid Laurier University, Department of Physics and Computer Science) ;
  • Koukouvinos, Christos (Department of Mathematics, National Technical University of Athens) ;
  • Simos, Dimitris E. (Department of Mathematics, National Technical University of Athens)
  • Received : 2011.01.10
  • Accepted : 2011.06.07
  • Published : 2011.09.30

Abstract

In this paper, we construct inequivalent Hadamard matrices based on several new and old full orthogonal designs, using circulant and symmetric block matrices. Not all orthogonal designs produce inequivalent Hadamard matrices, because the corresponding systems of equations do not possess solutions. The systems of equations arising when we search for inequivalent Hadamard matrices from full orthogonal designs using circulant and symmetric block matrices, can be concisely described using the periodic autocorrelation function of the generators of the block matrices. We use Maple, Magma, C and Unix tools to find many new inequivalent Hadamard matrices.

Keywords

References

  1. W. Bosma and J. Cannon, Handbook of Magma Functions, Version 2.9, Sydney, July, 2002.
  2. R. Craigen, Hadamard Matrices and Designs, In: Colbourn, C.J., Dinitz, J.H., (eds.) The CRC Handbook of Combinatorial Designs. pp. 370-377. CRC Press, Boca Raton, Fla., 1996.
  3. J. Day and B. Peterson, Growth in gaussian elimination, The American Mathematical Monthly 95 (1988), 489-513. https://doi.org/10.2307/2322755
  4. S. Georgiou, I.S. Kotsireas and C. Koukouvinos, Inequivalent Hadamard matrices of order 2n constructed from Hadamard matrices of order n, J. Combin. Math. Combin. Comput. 63 (2007), 65-79.
  5. A.V. Geramita and J. Seberry, Orthogonal Designs. Quadratic Forms and Hadamard Matrices. Lecture Notes in Pure and Applied Mathematics, 45. Marcel Dekker, Inc., New York, 1979.
  6. M. Hall, Jr., Combinatorial Theory, Reprint of the 1986 second edition, Wiley Classics Library, Wiley, New York, 1998.
  7. W.H. Holzmann and H. Kharaghani, On the Plotkin arrays, Australas. J. Combin. 22 (2000), 287-299.
  8. I.S. Kotsireas and C. Koukouvinos, Inequivalent Hadamard matrices with buckets, J. Discrete Math. Sci. Cryptogr. 7 (2004), 307-317.
  9. I.S. Kotsireas and C. Koukouvinos, Orthogonal designs via computational algebra, J. of Comb. Designs 14 (2006), 351-362. https://doi.org/10.1002/jcd.20108
  10. I.S. Kotsireas and C. Koukouvinos, Inequivalent Hadamard matrices from Orthogonal Designs. In: Proceedings of the 2007 International Workshop on Parallel Symbolic Com- putation, pp. 95-97. ACM, London, Ontario, Canada, 2007.
  11. I.S. Kotsireas and C. Koukouvinos, New skew-Hadamard matrices via computational algebra, Australas. J. Combin. 41 (2008), 235-248.
  12. I.S. Kotsireas, C. Koukouvinos, and G. Pinheiro, Metasoftware for Hadamard matrices, Int. J. Appl. Math. 18 (2005), 263-278.
  13. I.S. Kotsireas, C. Koukouvinos and J. Seberry, Hadamard ideals and Hadamard matrices with two circulant cores, European J. Combin. 27 (2006), 658-668. https://doi.org/10.1016/j.ejc.2005.03.004
  14. I.S. Kotsireas, C. Koukouvinos and D.E. Simos, Large orthogonal designs via amicable sets of matrices, Int. J. Appl. Math. 12 (2006), 217-232.
  15. I.S. Kotsireas, C. Koukouvinos and D.E. Simos, Inequivalent Hadamard matrices from base sequences, Util. Math. 78 (2009), 3-9.
  16. I.S. Kotsireas, C. Koukouvinos and D.E. Simos, Inequivalent Hadamard matrices from near normal sequences, J. Combin. Math. Combin. Comput. 75 (2010), 105-115.
  17. C. Koukouvinos, Sequences with Zero Autocorrelation, In: Colbourn, C.J., Dinitz, J.H., (eds.) The CRC Handbook of Combinatorial Designs. pp. 452-456. CRC Press, Boca Raton, Fla., 1996.
  18. C. Koukouvinos and D.E. Simos, Improving the lower bounds on inequivalent Hadamard matrices through orthogonal designs and meta-programming techniques, Appl. Numer. Math. 60 (2010), 370-377. https://doi.org/10.1016/j.apnum.2009.06.002
  19. C.W. Krueger, Software reuse, ACM computing surveys 24 (1992), 131-183. https://doi.org/10.1145/130844.130856
  20. C. Lam, S. Lam and V.D. Tonchev, Bounds on the number of affine, symmetric, and Hadamard designs and matrices, J. Combin. Theory Ser. A 92 (2000), 186-196.
  21. C. Lam, S. Lam and V.D. Tonchev, Bounds on the number of Hadamard designs of even order, J. Combin. Designs 9 (2001), 363-378. https://doi.org/10.1002/jcd.1017
  22. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, The Netherlands, North-Holland, Amsterdam, 1977.
  23. B.D. McKay, Hadamard equivalence via graph isomorphism, Discrete Math. 27 (1979), 213-214. https://doi.org/10.1016/0012-365X(79)90113-4
  24. E. Merchant, Exponentially many Hadamard designs, Des. Codes. Crypt. 38 (2006), 297- 308. https://doi.org/10.1007/s10623-005-6346-9
  25. W.P. Orrick, Switching operations for Hadamard matrices, SIAM J. Discrete Math. 22 (2008), 31-50. https://doi.org/10.1137/050641727
  26. L.R. Plackett and J.P. Burman, The design of optimum multifactorial experiments, Biometrika 33 (1946), 305-325. https://doi.org/10.1093/biomet/33.4.305
  27. E.C. Posner, Combinatorial Structures in Planetary Reconnaissance, In: Mann, H.B., (eds) Error Correcting Codes, Wiley, N.Y., 1968.
  28. J. Seberry and R. Craigen, Orthogonal Designs, In: Colbourn, C.J., Dinitz, J.H., (eds.) The CRC Handbook of Combinatorial Designs, pp. 400-406. CRC Press, Boca Raton, Fla., 1996.
  29. J.H. Van Lint, Coding, decoding and Combinatorics, In: Wilson, R.J., (eds.) Applications of Combinatorics, Shiva, Cheshire, 1982.
  30. R.K. Yarlagadda and J.E. Hershey, Hadamard Matrix Analysis and Synthesis: With Applications to Communications and Signal/Image Processing, Kluwer Acad. Pub., Boston, 1997.