References
- F. Alizadeh, Interior-point methods in Semidefinite Programming with applications to com- biatorial optimization, SIAM J. Optim., 5 (1995),13-51. https://doi.org/10.1137/0805002
- S. Bellavia, S. Pieraccini, Convergence analysis of an inexact infeasible interior point method for semidefinite programming, Comput. Optim. Appl, 29 (2004),289-313.
- C. Helmberg, Semidefinite Programming fo Constrained Optimization, Konrad-Zuse- Zentrum, fur Informationstechnik Berlin, 2000.
- E. De. Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, Kluwer Academic Publishers, Dordrecht. The Netherland,2002.
- K. Kobayashi, K. Nakata, M. Kojima, A conversition of an SDP having free variables into the standard form SDP, Comput. Optim. Appl. 36 (2007), 289-307. https://doi.org/10.1007/s10589-006-9002-z
- M. Kojima, S. Shindoh, S. Hara, Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrics, SIAM J. Optim., 7 (1997), 86-125. https://doi.org/10.1137/S1052623494269035
- M. Kojima, M. Shida, S. Shindoh, Local convergence of predictor-corrector infeasible interior-point algorithms for SDPs and SDLCPs, Math. Prog. 80, (1998), 129-160.
- J. Korzak, ,Convergence analysis of inexact infeasible-interior-point algorithms for solving linear programming problems, SIAM J. Optim. 11 (2000), 133-148. https://doi.org/10.1137/S1052623497329993
- F. A. Miguel, B. Samuel, On handling free variables in interior-point methods for conic linear optimization, SIAM J. Optim., 18 (2007), 1310-1325.
- P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Prog. 96 (2003), 293-320. https://doi.org/10.1007/s10107-003-0387-5
- G. Pataki, S. Schmieta, The DIMACS Library of Semidefinite-Quadratic-Linear programs, Computational Optimizational Research Center, Columbia University, New York, NY, USA, 1999.
- F. A. Potra, R. Sheng, A superlinearly convergent primal-dual infeasible-interior-point algorithm for semidefinite programming, SIAM J. Optim., 8 (1998), 1007-1028. https://doi.org/10.1137/S1052623495294955
- F. A. Potra, R. Sheng, Superlinear convergence of interior-point algorithms for semidefinite programming, J. Optim. Theory Appl. 99 (1998), 103-119. https://doi.org/10.1023/A:1021700210959
- F. A. Potra, S. Wright, Interior-point methods, J. Comput. Appl. Math., 124 (2000), 281-302. https://doi.org/10.1016/S0377-0427(00)00433-7
- M. Todd, Semidefinite optimization, Acta Numerica, 10 (2001),515-560.
- L. Vandenberghe, S. Boyd, Semidefinte programming, SIAM Review, 38 (1996),49-95. https://doi.org/10.1137/1038003
- Y. Zhang, On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming, SIAM J. Optim. 8 (1998),365-386. https://doi.org/10.1137/S1052623495296115
- Z. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and J. K. Percus, The reduced density matrix method for electronic structure calculations and the role of three-index representabil- ity, J. Chem. Phys. 120(2004), 261-282.
- C. Baiocchi and A. Capelo, Variational and Quasi Variational Inequalities, J. Wiley and Sons, New York, 1984.
- D. Chan and J.S. Pang, The generalized quasi variational inequality problems, Math. Oper. Research 7 (1982), 211-222. https://doi.org/10.1287/moor.7.2.211
- C. Belly, Variational and Quasi Variational Inequalities, J. Appl.Math. and Computing 6(1999), 234-266.
- D. Pang, The generalized quasi variational inequality problems, J. Appl.Math. and Com- puting 8(2002), 123-245.