DOI QR코드

DOI QR Code

1g 진동대 실험을 이용한 액상화 지반에 근입된 말뚝에 작용하는 동적 토압 분석

Analysis of Dynamic Earth Pressure on Piles in Liquefiable Soils by 1g Shaking Table Tests

  • Han, Jin-Tae (Dept. of Civil & Environmental Engineering, Seoul National Univ.) ;
  • Choi, Jung-In (Dept. of Civil & Environmental Engineering, UCLA) ;
  • Kim, Sung-Hwan (Ministry of Public Administration and Security) ;
  • Yoo, Min-Taek (Dept. of Civil & Environmental Engineering, Seoul National Univ.) ;
  • Kim, Myoung-Mo (Dept. of Civil & Environmental Engineering, Seoul National Univ.)
  • 투고 : 2011.07.25
  • 심사 : 2011.09.19
  • 발행 : 2011.09.30

초록

본 연구에서는 1g 진동대 실험을 통해 지진시 액상화 지반에 근입된 말뚝에 작용하는 동적 토압의 크기 및 위상 변화를 분석하였다. 건조 사질토 지반에 설치된 말뚝의 경우 말뚝 상부 하중 관성력의 영향으로 지표면 가까이에서 동적 토압이 크게 작용하고 깊이가 깊어질수록 동적 토압이 감소하는 데 비해, 액상화 지반에 설치된 말뚝의 경우 동적 토압의 크기 및 발생 양상은 지반 내에 발생한 과잉간극수압의 크기 및 발생 양상과 유사하였으며, 관성력의 영향은 거의 없는 것으로 나타났다. 또한, 건조 사질토 및 포화 사질토에서 액상화가 발생하지 않는 경우 말뚝에 작용하는 동적 토압과 상부 하중의 관성력은 서로 반대 방향으로 작용하다가, 액상화 발생시에는 지표면 가까이에서 동일한 방향으로 작용하는 것으로 나타났으며, 액상화 후에는 관성력 영향이 소멸되어 동적 토압 크기가 크게 감소하였다. 끝으로 액상화 발생시 말뚝에 작용하는 동적 토압의 진동 성분의 크기는 안벽 구조물의 동적 수압을 산정하는 Westergaard 식으로 산정한 값의 약 50% 정도였다.

In this study, the magnitude and phase variation of dynamic earth pressure acting on a pile in liquefiable soils were analyzed using a series of 1g shaking table tests. In the case of a pile in dry sand, the value of the dynamic earth pressure was the highest near the surface due to the inertia force of the upper load on the pile and it decreased as the depth of the pile got lower. On the other hand, for a pile in liquefiable sand, the magnitude and shape of the dynamic earth pressure were similar to those of the excess pore pressure and was largely affected by the deformation of soils. Furthermore, the inertia force of the upper load and the dynamic earth pressure acted in opposite directions in cases of dry sand and saturated sand where low excess pore pressure had developed. However, after liquefaction, those force components near surface acted unfavorably in the same direction. Finally, the Westergaard’s solution was modified and proposed as a method to evaluate the magnitude of dynamic earth pressure acting on a pile during liquefaction.

키워드

참고문헌

  1. Abdoun, T., Dobry, R., and O'Rouke, T.D. (1997), "Centrifuge and numerical modelling of soil-pile interaction during earthquake induced soil liquefaction and lateral spreading", Observation and Modelling in Numerical Analysis and Model Tests in Dynamic Soil-Structure Interaction Problems—Proc., Sessions held in Conjunction with Geo-Logan '97, Logan, Utah, pp.76-90.
  2. Dobry, R., Taboada, V., and Liu, L. (1995), "Centrifuge modelling of liquefaction effects during earthquakes", Proc., First Conf. on Earthquake Geotechnical Engineering, Tokyo, pp.1291-1324.
  3. Finn, W.D.L., and Fujita, N. (2002), "Piles in liquefiable soils: seismic analysis and design issues", Soil Dynamics and Earthquake Engineering, 22(9), pp.731-742. https://doi.org/10.1016/S0267-7261(02)00094-5
  4. Fujiwara, T., Horikoshi, K., Higuchi, Y., and Sueoka, T. (2000), "Estimation of Dynamic Displacement of Gravity Type Quay Walls based on Centrifuge Modeling", Proc. Of 12th World Conf. on Earthquake Engrg., The New Zealand Society for Earthquake Engrg., Upper Hutt, New Zealand, Paper No.2429.
  5. Horikoshi, K., Tateishi, A., and Fujiwara, T. (1998), "Centrifuge modelling of a single pile subjected to liquefaction-induced lateral spreading", Soils Found., (Special Issue No.2), pp. 193-208.
  6. Kim, S. R. Kwon, O. S. and Kim, M. M. (2004), "Evaluation of force components acting on gravity type quay walls during earthquakes", Soil Dynamics and Earthquake Engineering, 24(11), pp.853-866. https://doi.org/10.1016/j.soildyn.2004.04.007
  7. Kohama, E. (2000), "A Study on the Stability of Gravity Type Quay Wall during Earthquake", Ph. D. Dissertation, Hokkaido University, Japan.
  8. Mizuno, H., Sugimoto, M., Mori, T., Iiba, M., and Hirade, T. (2000), "Dynamic behaviour of pile foundation in liquefaction process—Shaking table tests utilising big shear box", Proc., 12th World Conf. on Earthquake Engineering, Auckland, New Zealand, Paper No.1883.
  9. Nakamura, T., Sugano, T., Oikawa, K., and Mito, M. (2000), "An experimental study on the pier damaged by 1995 Hyogoken-Nanbu earthquake", Proc., 12th World Conf. on Earthquake Engineering, Auckland, New Zealand, Paper No.1038.
  10. Ohtomo, K. (1996), "Effects of liquefaction induced lateral flow on a conduit with supporting piles", Proc., 11th World Conf. on Earthquake Engineering, Paper No.386.
  11. Sato, M., Watanabe, H., Takeda, T., and Shimada, M. (2000), "Simplified Method to Evaluate Caisson Type Quay Wall Movement", Proc. Of 12th World Conf. on Earthquake Engrg., The New Zealand Society for Earthquake Engrg., Upper Hutt, New Zealand, Paper No.1440.
  12. Tamura, S., Suzuki, Y., Tsuchiya, T., Fujii, S., and Kagawa, T. (2000), "Dynamic response and failure mechanisms of a pile foundation during soil liquefaction by shaking table test with a large scale laminar shear box", Proc., 12th World Conf. on Earthquake Engineering, Auckland, New Zealand, Paper No.0903.
  13. Tokimatsu, K., Suzuki, H., and Sato, M. (2005), "Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation", Soil Dynamics and Earthquake Engineering, 25(7-10), pp.753-762. https://doi.org/10.1016/j.soildyn.2004.11.018
  14. Westergaard, H.M. (1933), "Water Pressures on Dams during Earthquakes", Trans. of ASCE, Vol.98, pp.418-432.
  15. Wilson, D. W., Boulanger, R. W., and Kutter, B. L. (2000), "Observed seismic lateral resistance of liquefying sand", J. Geotech. Geoenviron. Eng., 126(10), pp.898-906. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:10(898)
  16. Yasuda, S., Ishihara, K., Morimoto, I., Orense, R., Ikeda, M., and Tamura, S. (2000), "Large-scale shaking table tests on pile foundations in liquefied ground", Proc., 12th World Conf. on Earthquake Engineering, Auckland, New Zealand, Paper No.1474.