DOI QR코드

DOI QR Code

Recent Development to Generate Carbon Dioxide-based Cyclic Carbonate and Polycarbonate

이산화탄소기반 고리형 카보네이트 및 폴리카보네이트 제조 연구 동향

  • Kwon, Doo-Yeon (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Jae-Il (Department of Molecular Science and Technology, Ajou University) ;
  • Kang, Hwi-Ju (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Da-Yeon (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Jae-Ho (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Bong (Department of Polymer Engineering, Pukyong National University) ;
  • Kim, Moon-Suk (Department of Molecular Science and Technology, Ajou University)
  • 권두연 (아주대학교 분자과학기술학과) ;
  • 김재일 (아주대학교 분자과학기술학과) ;
  • 강휘주 (아주대학교 분자과학기술학과) ;
  • 김다연 (아주대학교 분자과학기술학과) ;
  • 김재호 (아주대학교 분자과학기술학과) ;
  • 이봉 (부경대학교 고분자공학과) ;
  • 김문석 (아주대학교 분자과학기술학과)
  • Received : 2011.07.14
  • Accepted : 2011.09.16
  • Published : 2011.09.30

Abstract

The green house gas, carbon dioxide, can be utilized as raw materials to prepare carbon dioxide-based polycarbonates in research and industry. The carbon dioxide-based polycarbonates is one of the emerging low-cost green polymers. Recently, the fast development of carbon dioxide-based polycarbonates has created new chances for industry. In this review, we describe the preparation and characterization of cyclic carbonate monomer using carbon dioxide, oxiranes and oxetanes in the presence of various catalysts and preparation of polycarbonates from cyclic carbonate monomer, presenting an organized and detailed overview of the state of the art.

온실효과 유발 이산화탄소는 학문적, 산업적 관점에서 이산화탄소 기반 폴리카보네이트 제조에 대한 원료로서 적용 가능하다. 그러므로 이산화탄소 기반 폴리카보네이트는 탁월한 경제적 녹색고분자이다. 최근 이산화탄소 기반 폴리카보네이트의 빠른 개발이 산업적으로 새로운 기회를 제공하고 있다. 본 총설에서는 다양한 촉매 존재하에서 이산화탄소 및 에폭사이드 계열 화합물을 이용한 고리형 카보네이트 모노마 제조 및 제조된 모노마로부터 이산화탄소 기반 폴리카보네이트 제조에 대한 연구 동향을 설명하고자 한다.

Keywords

References

  1. Anastas, P. T., and Lankey, R. L., "Life Cycle Assessment and Green Chemistry: The Yin and Yang of Industrial Ecology," Green Chem., 2(6), 289-295 (2000). https://doi.org/10.1039/b005650m
  2. Anastas, P. T., and Kirchhoff, M. M., "Origins, Current Status, and Future Challenges of Green Chemistry," Acc. Chem. Res., 35(9), 686-694 (2002). https://doi.org/10.1021/ar010065m
  3. Sakakura, T., Choi, J. C., and Yasuda, H., "Transformation of Carbon Dioxide," Chem. Rev., 107, 2365-2387 (2007). https://doi.org/10.1021/cr068357u
  4. Gao, J., Li, H., Zhang, Y., and Fei, W., "Non-phosgene Synthesis of Isocyanates Based on $CO_2$: Synthesis of Methyl N-phenyl Carbamate through Coupling Route with Lead Compound Catalysts," Catal. Today, 148(3-4), 378-382 (2009). https://doi.org/10.1016/j.cattod.2009.07.069
  5. Fan, G., Wang, Z., Zou, B., and Wang, M., "Synthesis of Diphenyl Carbonate from Compressed Carbon Dioxide and Phenol without use of Organic Solvent," Fuel Process. Technol., 92(5), 1052-1055 (2011). https://doi.org/10.1016/j.fuproc.2010.12.031
  6. Sakakura, T., and Kohno, K., "The Synthesis of Organic Carbonates from Carbon Dioxide," Chem. Commun., 11, 1312-1330 (2009).
  7. Darensbourg, D. J., and Holtcamp, M. W., "Catalysts for the Reactions of Epoxides and Carbon Dioxide," Coord. Chem. Rev., 153, 155-174 (1996). https://doi.org/10.1016/0010-8545(95)01232-X
  8. Webster, D. C., "Cyclic Carbonate Functional Polymers and their Applications," Prog. Org. Coat., 47(1), 77-86 (2003). https://doi.org/10.1016/S0300-9440(03)00074-2
  9. Unger, F., Westedt, U., Hanefeld, P., Wombacher, R., Zimmermann, S., Greiner, A., Ausborn, M., and Kissel, T., "Poly (Ethylene Carbonate): A Thermoelastic and Biodegradable Biomaterial for Drug Eluting Stent Coatings?," J. Controlled Release, 117(3), 312-321 (2007). https://doi.org/10.1016/j.jconrel.2006.11.003
  10. Hyun, H., Lee, J. W., Cho, J. S., Kim, Y. H., Lee, C. R., Kim, M. S., Khang, G., and Lee, H. B., "Polymeric Nano-micelles using Poly(Ethylene Glycol) and Poly(Trimethylene Carbonate) Diblock Copolymers as a Drug Carrier," Colloids Surf., A: Physicochem. Eng., 313-314, 131-135 (2008). https://doi.org/10.1016/j.colsurfa.2007.05.078
  11. Acemoglu, M., Nimmerfall, F., Bantle, S., and Stoll, G. H., "Poly(Ethylene Carbonate)s, Part I: Syntheses and Structural Effects on Biodegradation," J. Controlled Release, 49(2-3), 263-276 (1997). https://doi.org/10.1016/S0168-3659(97)00097-7
  12. Lambert, O., Nagele, O., Loux, V., Bonny, J. D., and Laurent, M. H., "Poly(Ethylene Carbonate) Microspheres: Manufacturing Process and Internal Structure Characterization," J. Controlled Release, 67(1), 89-99 (2000). https://doi.org/10.1016/S0168-3659(00)00198-X
  13. Inoue, S., Koinuma, H., and Tsuruta, T., "Recent Progress in the Synthesis of Polymers Based on Carbon Dioxide," J. Polym. Sci. Part B: Polym. Lett., 7, 287-292 (1969). https://doi.org/10.1002/pol.1969.110070408
  14. Ochiai, B., and Endo, T., "Carbon Dioxide and Carbon Disulfide as Resources for Functional Polymers," Prog. Polym. Sci., 30(2), 183-215 (2005). https://doi.org/10.1016/j.progpolymsci.2005.01.005
  15. Baba, A., Kashiwagi, H., and Matsuda, H., "Cycloaddition of Oxetane and Carbon Dioxide Catalyzed by Tetraphenylstibonium Iodide," Tetrahedron Lett., 26(10), 1323-1324 (1985). https://doi.org/10.1016/S0040-4039(00)94883-4
  16. Cardillo, G., Orena, M., Porzi, G., and Sandri, S., "A New Regio- and Stereo-selective Functionalization of Allylic and Homoallylic Alcohols," J. Chem. Soc., Chem. Commun., 10, 465-466 (1981).
  17. Paek, S. M., Noh, S. K., Lyoo, W. S., and Shim, J. J., "Preparation of Poly(Vinyl Acetate) in the Presence of Supercritical Carbon Dioxide," Clean Technology, 12(4), 191-197 (2006).
  18. Hwang, H. S., and Lim, K. T., "Ring-Opening Polymerization of L-Lactide with Polydimethylsiloxane Based Stabilizers in Supercritical Carbon Dioxide," Clean Technology, 12(2), 62-66 (2006).
  19. Huang, S. Y., Liu, S. G., Li, J. P., Zhaog, N., Wei, W., and Sun, Y. H., "Synthesis of Cyclic Carbonate from Carbon Dioxide and Diols Over Metal Acetates," Fuel Chem. Technol., 35(6), 701-705 (2007). https://doi.org/10.1016/S1872-5813(08)60005-5
  20. Darensbourg, D. J., Lewis, S. J., Rodgers, J. L., and Yarbrough, J. C., "Carbon Dioxide/Epoxide Coupling Reactions Utilizing Lewis Base Adducts of Zinc Halides as Catalysts. Cyclic Carbonate Versus Polycarbonate Production," Inorg. Chem., 42(2), 581-589 (2003). https://doi.org/10.1021/ic0259641
  21. Wua, S. S., Zhang, X. W., Dai, W. L., Yin, S. F., Li, W. S., Ren, Y. Q., and Au, C. T., "$ZnBr_2$-$Ph_4PI $ as Highly Efficient Catalyst for Cyclic Carbonates Synthesis from Terminal Epoxides and Carbon Dioxide," Appl. Catal. A: General, 341(1-2), 106-111 (2008). https://doi.org/10.1016/j.apcata.2008.02.021
  22. Xiao, L. F., Li, F. W., and Xia, C. G., "An Easily Recoverable and Efficient Natural Biopolymer-supported Zinc Chloride Catalyst System for the Chemical Fixation of Carbon Dioxide to Cyclic Carbonate," Appl. Catal. A: General, 279(1-2), 125-129 (2005). https://doi.org/10.1016/j.apcata.2004.10.022
  23. Calo, V., Nacci, A., Monopoli, A., and Fanizzi, A., "Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts," Org. Lett., 4(15), 2561-2563 (2002). https://doi.org/10.1021/ol026189w
  24. Lu, X. B., Zhang, Y. J., Liang, B., Li, X., and Wang, H., "Chemical Fixation of Carbon Dioxide to Cyclic Carbonates under Extremely Mild Conditions with Highly Active Bifunctional Catalysts," J. Mol. Catal. A: Chemical, 210(1-2), 31-34 (2004). https://doi.org/10.1016/j.molcata.2003.09.010
  25. Decortes, A., Castilla, A. M., and Kleij, A. W., "Salen-Complex- Mediated Formation of Cyclic Carbonates by Cycloaddition of $CO_2$ to Epoxides," Angew. Chem. Int. Ed., 49(51), 9822-9837 (2010). https://doi.org/10.1002/anie.201002087
  26. Paddock, R. L., and Nguyen, S. T., "Chemical $CO_2$ Fixation: Cr(III) Salen Complexes as Highly Efficient Catalysts for the Coupling of $CO_2$ and Epoxides," J. Am. Chem. Soc., 123(46), 11498-11499 (2001). https://doi.org/10.1021/ja0164677
  27. Dai, W. L., Luo, S. L., Yin, S. F., and Au, C. T., "The Direct Transformation of Carbon Dioxide to Organic Carbonates Over Heterogeneous Catalysts," Appl. Catal. A: General, 366(1), 2-12 (2009). https://doi.org/10.1016/j.apcata.2009.06.045
  28. Bhanage, B. M., Fujita, S. I., Ikushima, Y., and Arai, M., "Synthesis of Dimethyl Carbonate and Glycols from Carbon Dioxide, Epoxides, and Methanol using Heterogeneous Basic Metal Oxide Catalysts with High Activity and Selectivity," Appl. Catal. A: General, 219(1-2), 259-266 (2001). https://doi.org/10.1016/S0926-860X(01)00698-6
  29. Xiao, L. F., Li, F. W., Peng, J. J., and Xia, C. G., "Immobilized Ionic Liquid/zinc Chloride: Heterogeneous Catalyst for Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides," J. Mol. Catal. A: Chemical, 253(1-2), 265-269 (2006). https://doi.org/10.1016/j.molcata.2006.03.047
  30. Udayakumar, S., Raman, V., Shim, H. L., and Park, D. W., "Cycloaddition of Carbon Dioxide for Commercially-imperative Cyclic Carbonates using Ionic Liquid-functionalized Porous Amorphous Silica," Appl. Catal. A: General, 368(1-2), 97-104 (2009). https://doi.org/10.1016/j.apcata.2009.08.015
  31. Sun, J., Fujita, S. I., and Arai, M., "Development in the Green Synthesis of Cyclic Carbonate from Carbon Dioxide using Ionic Liquids," J. Organomet. Chem., 690(15), 3490-3497 (2005). https://doi.org/10.1016/j.jorganchem.2005.02.011
  32. Zhang, X., Wang, D., Zhao, M., Al-Arifi, A. S. N., Aouak, T., Al-Othman, Z. A., Wei, W., and Sun, Y., "Grafted Ionic Liquid: Catalyst for Solventless Cycloaddition of Carbon Dioxide and Propylene Oxide," Catal. Commun., 11(1), 43-46 (2009). https://doi.org/10.1016/j.catcom.2009.08.007
  33. Iwasaki, T., Kihara, N., and Endo, T., "Reaction of Various Oxiranes and Carbon Dioxide. Synthesis and Aminolysis of Five-membered Cyclic Carbonates," Bull. Chem. Soc. Jpn., 73(3), 713-719 (2000). https://doi.org/10.1246/bcsj.73.713
  34. Tomita, H., Sanda, F., and Endo, T., "Structural Analysis of Polyhydroxyurethane Obtained by Polyaddition of Bifunctional Five-Membered Cyclic Carbonate and Diamine Based on the Model Reaction," J. Polym. Sci. Part A: Polym. Chem., 39(6), 851-859 (2001). https://doi.org/10.1002/1099-0518(20010315)39:6<851::AID-POLA1058>3.0.CO;2-3
  35. Ubaghs, L., Fricke, N., Keul, H., and Hocker, H., "Polyurethanes with Pendant Hydroxyl Groups: Synthesis and Characterization," Macromol. Rapid Commun., 25(3), 517-521 (2004). https://doi.org/10.1002/marc.200300064
  36. Pawlowski, P., and Rokicki, G., "Synthesis of Oligocarbonate Diols from Ethylene Carbonate and Aliphatic Diols Catalyzed by Alkali Metal Salts," Polymer, 45(10), 3125-3127 (2004). https://doi.org/10.1016/j.polymer.2004.03.047
  37. Tanzi, M. C., Fare, S., and Petrini, P., "In Vitro Stability of Polyether and Polycarbonate Urethanes," J. Biomater. Appl., 14(4), 325-348 (2000). https://doi.org/10.1106/7TJU-H1YA-4NYT-XL84
  38. Evans, W. J., and Katsumata, H., "Copolymerization of Ethylene Carbonate and $\varepsilon$-caprolactone using Samarium Complexes," Macromolecules, 27(14), 4011-4013 (1994). https://doi.org/10.1021/ma00092a048
  39. Shirahama, H., Kanetani, A., and Yasuda, H., "Synthesis and Biodegradability of Copolymers of Ethylene Carbonate with Lactones," Polym. J., 32(3), 280-286 (2000). https://doi.org/10.1295/polymj.32.280
  40. Schmitz, F., Keul, H., and Ho¨cker, H., "Alternating Copolymers of Tetramethylene Urea with 2,2-dimethyltrimethylene Carbonate and Ethylene Carbonate; Preparation of the Corresponding Polyurethanes," Macromol. Rapid Commun., 18(8), 699-706 (1997). https://doi.org/10.1002/marc.1997.030180811
  41. Schmitz, F., Keul, H., and Ho¨cker, H., "Copolymerization of 2,2-dimethyltrimethylene Carbonate with Tetramethylene Urea: A New Route to the Polyurethane," Polymer, 39(14), 3179- 3186 (1998). https://doi.org/10.1016/S0032-3861(97)00640-X
  42. Hyun, H., Cho, J. S., Kim, B. S., Lee, J. W., Kim, M. S., Khang, G., Park, K., and Lee, H. B., "Comparison of Micelles Formed by Amphiphilic Star Block Copolymers Prepared in the Presence of a Nonmetallic Monomer Activator," J. Polym. Sci., Part A: Polym. Chem., 46(6), 2084-2096 (2008). https://doi.org/10.1002/pola.22543
  43. Kim, B. S., Oh, J. M., Cho, J. S., Lee, S. H., Lee, B., Khang, G., Lee, H. B., and Kim, M. S., "Comparison of Micelles Formed by Amphiphilic Poly(ethylene glycol)-b-Poly(trimethylene carbonate) Star Block Copolymers," J. Appl. Polym. Sci., 111(4), 1706-1712 (2009). https://doi.org/10.1002/app.29179
  44. Kim, B. H., Jang, S. H., Min S. R., and Kim, H. Y., "Propylene Carbonate Synthesis using Supercritical$ CO_2 $and Ionic Liquid," Clean Tech., 17(1), 37-40 (2011).
  45. Shim, H. L., Lee, M. K., Yu, J. I., and Park, D. W., "Cycloaddition of Carbon Dioxide to Allyl Glycidyl Ether Using Silica-supported Ionic Liquid as a Catalyst," Clean Tech., 14(3), 166-170 (2008).