DOI QR코드

DOI QR Code

Emerging Pathogenetic Mechanisms of Pulmonary Arterial Hypertension: Nitric Oxide and More

  • Kim, Young-Dae (Department of Internal Medicine, Dong-A University College of Medicine)
  • Published : 2011.02.28

Abstract

Keywords

References

  1. Galie N, Hoeper MM, Humbert M, et al. Guidelines on diagnosis and treatment of pulmonary hypertension: the task force on diagnosis and treatment of pulmonary hypertension of the European society of cardiology and of the European respiratory society. Eur Heart J 2009; 30:2493-537. https://doi.org/10.1093/eurheartj/ehp297
  2. Pietra GG, Capron F, Stewart S, et al. Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 2004;43(12 Suppl S):S25-32. https://doi.org/10.1016/j.jacc.2004.02.033
  3. Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 2002;45:173-202. https://doi.org/10.1053/pcad.2002.130041
  4. Cool CD, Groshong SD, Oakey J, Voelkel NF. Pulmonary hypertension: cellular and molecular mechanisms. Chest 2005;128(6 Suppl): S565-71. https://doi.org/10.1378/chest.128.6_suppl.565S
  5. Koo HS, Kim KC, Hong YM. Gene expression of nitric oxide synthase and matrix metalloproteinase-2 in monocrotaline-induced pulmonary hypertension in rats. Korean Circulation J 2011;41:83-90. https://doi.org/10.4070/kcj.2011.41.2.83
  6. Mukhopadhyay S, Xu F, Sehgal PB. Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia, and senescence: live-cell caveolar and cytoplasmic NO imaging. Am J Physiol Heart Circ Physiol 2006;292:H1373-89. https://doi.org/10.1152/ajpheart.00990.2006
  7. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 1995;333:214-21 https://doi.org/10.1056/NEJM199507273330403
  8. Resta TC, Gonzales RJ, Dail WG, Sanders TC, Walker BR. Selective upregulation of arterial endothelial nitric oxide synthase in pulmonary hypertension. Am J Physiol 1997;272:H806-13.
  9. McLaughlin VV, McGoon MD. Pulmonary arterial hypertension. Circulation 2006;114:1417-31. https://doi.org/10.1161/CIRCULATIONAHA.104.503540
  10. Morrell NW, Adnot S, Archer SL, et al. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 2009;54(1 Suppl): S20-31. https://doi.org/10.1016/j.jacc.2009.04.018
  11. Thomson JR, Machado RD, Pauciulo MW, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 2000;37:741-5. https://doi.org/10.1136/jmg.37.10.741
  12. Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 2006; 98:209-17. https://doi.org/10.1161/01.RES.0000200180.01710.e6
  13. Yang X, Long L, Southwood M, et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 2005;96:1053-63. https://doi.org/10.1161/01.RES.0000166926.54293.68
  14. Smith P, Heath D, Yacoub M, Madden B, Caslin A, Gosney J. The ultrastructure of plexogenic pulmonary arteriopathy. J Pathol 1990; 160:111-21. https://doi.org/10.1002/path.1711600204
  15. Mathew R, Huang J, Shah M, Patel K, Gewitz M, Sehgal PB. Disruption of endothelial-cell caveolin-1alpha/raft scaffolding during development of monocrotaline-induced pulmonary hypertension. Circulation 2004;110:1499-506. https://doi.org/10.1161/01.CIR.0000141576.39579.23
  16. Mukhopadhyay S, Xu F, Sehgal PB. Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia, and senescence: live-cell caveolar and cytoplasmic NO imaging. Am J Phy-siol Heart Circ Physiol 2006;292:H1373-89. https://doi.org/10.1152/ajpheart.00990.2006
  17. Sehgal PB, Mukhopadhyay S. Dysfunctional intracellular trafficking in the pathobiology of pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2007;37:31-7. https://doi.org/10.1165/rcmb.2007-0066TR
  18. Nishihara A, Watabe T, Imamura T, Miyazono K. Functional heterogeneity of bone morphogenetic protein receptor-II mutants found in patients with primary pulmonary hypertension. Mol Biol Cell 2002; 13:3055-63. https://doi.org/10.1091/mbc.E02-02-0063
  19. Iwakiri Y, Satoh A, Chatterjee S, et al. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proc Natl Acad Sci U S A 2006;103:19777-82. https://doi.org/10.1073/pnas.0605907103
  20. Xu W, Kaneko FT, Zheng S, et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J 2004;18:1746-8. https://doi.org/10.1096/fj.04-2317fje
  21. Pullamsetti S, Kiss L, Ghofrani HA, et al. Increased levels and reduc-ed catabolism of asymmetric and symmetric dimethylarginines in pul-monary hypertension. FASEB J 2005;19:1175-7. https://doi.org/10.1096/fj.04-3223fje
  22. Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 2010;121:2045-66. https://doi.org/10.1161/CIRCULATIONAHA.108.847707
  23. Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF1alpha-KV1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 2008;294:H570-8. https://doi.org/10.1152/ajpheart.01324.2007
  24. Bonnet S, Michelakis ED, Porter CJ, et al. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxy-gen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 2006;113:2630-41. https://doi.org/10.1161/CIRCULATIONAHA.105.609008
  25. Landsberg JW, Yuan JX. Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. New Physiol Sci 2004;19: 44-50.
  26. Bonnet S, Rochefort G, Sutendra G, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A 2007;104:11418-23. https://doi.org/10.1073/pnas.0610467104
  27. Bonnet S, Archer SL, Allalunis-Turner J, et al. A mitochondria-$K^{+}$ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007;11:37-51. https://doi.org/10.1016/j.ccr.2006.10.020
  28. Reindel JF, Roth RA. The effects of monocrotaline pyrrole on cultured bovine pulmonary artery endothelial and smooth muscle cells. Am J Pathol 1991;138:707-19.

Cited by

  1. RNA‐binding protein SFPQ cooperates with HDAC1 to suppress CD40 transcription in pulmonary adventitial fibroblasts vol.44, pp.1, 2011, https://doi.org/10.1002/cbin.11216