DOI QR코드

DOI QR Code

THE STABILITY OF LINEAR MAPPINGS IN BANACH MODULES ASSOCIATED WITH A GENERALIZED JENSEN MAPPING

  • Received : 2011.03.08
  • Accepted : 2011.05.16
  • Published : 2011.06.30

Abstract

Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$(\ddag)\hspace{50}dk\;f\left(\frac{\sum_{j=1}^{dk}x_j}{dk}\right)=\displaystyle\sum_{j=1}^{dk}f(x_j)$$ if and only if the mapping $f$ : X ${\rightarrow}$ Y is Cauchy additive, and prove the Cauchy-Rassias stability of the functional equation ($\ddag$) in Banach modules over a unital $C^{\ast}$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^{\ast}$-algebras. As an application, we show that every almost homomorphism $h\;:\;\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h((k-1)^nuy)=h((k-1)^nu)h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and $n$ = 0,1,2,$\cdots$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^{\ast}$-algebras.

Keywords

References

  1. Z. Gajda, On stability of additive mappings, Internat. J. Math. and Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
  2. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  3. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  4. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153. https://doi.org/10.1007/BF01830975
  5. K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315. https://doi.org/10.1006/jmaa.1999.6546
  6. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras Elementary Theory, Academic Press, New York, 1983.
  7. C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720. https://doi.org/10.1016/S0022-247X(02)00386-4
  8. C. Park, Modified Trif 's functional equations in Banach modules over a $C^-\ast}$- algebra and approximate algebra homomorphisms, J. Math. Anal. Appl. 278 (2003), 93-108. https://doi.org/10.1016/S0022-247X(02)00573-5
  9. C. Park, Linear ${\ast}$-derivations on JB$^{\ast}$-algebras, Acta Math. Scientia 25 (2005), 449- 454. https://doi.org/10.1016/S0252-9602(05)60008-2
  10. C. Park and J. Hou, Homomorphisms between $C^{\ast}}$-algebras associated with the Trif functional equation and linear derivations on $C^{\ast}}$-algebras, J. Korean Math. Soc. 41 (2004), 461-477. https://doi.org/10.4134/JKMS.2004.41.3.461
  11. C. Park and W. Park, On the Jensen's equation in Banach modules, Taiwanese J. Math. 6 (2002), 523-531. https://doi.org/10.11650/twjm/1500407476
  12. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  13. Th. M. Rassias, Problem 16; 2 Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309.
  14. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130. https://doi.org/10.1023/A:1006499223572
  15. Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378. https://doi.org/10.1006/jmaa.2000.6788
  16. Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284. https://doi.org/10.1006/jmaa.2000.7046
  17. Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
  18. Th. M. Rassias and P. Semrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338. https://doi.org/10.1006/jmaa.1993.1070
  19. T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), 604-616. https://doi.org/10.1016/S0022-247X(02)00181-6
  20. S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.