DOI QR코드

DOI QR Code

Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

  • Kim, Hyun-Joo (Department of Radiology and the Research Institute of Radiology) ;
  • Lee, Sang-Hoon (Department of Radiology and the Research Institute of Radiology) ;
  • Kang, Chang-Ho (Department of Radiology and the Research Institute of Radiology) ;
  • Ryu, Jeong-Ah (Department of Radiology and the Research Institute of Radiology) ;
  • Shin, Myung-Jin (Department of Radiology and the Research Institute of Radiology) ;
  • Cho, Kyung-Ja (Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Cho, Woo-Shin (Department of Orthopedic Surgery, University of Ulsan College of Medicine, Asan Medical Center)
  • Published : 2011.02.01

Abstract

Objective: We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast fi eld echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Materials and Methods: Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fl uid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic fi ndings. The sensitivity, specifi city and accuracy were evaluated for each sequence. The signifi cance of the differences for the individual sequences was calculated using the McNemar test. Results: The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically signifi cant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). Conclusion: The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella.

Keywords

References

  1. Disler DG, McCauley TR, Wirth CR, Fuchs MD. Detection of knee hyaline cartilage defects using fat-suppressed threedimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol 1995;165:377-382 https://doi.org/10.2214/ajr.165.2.7618561
  2. Mohr A, Priebe M, Taouli B, Grimm J, Heller M, Brossmann J. Selective water excitation for faster MR imaging of articular cartilage defects: initial clinical results. Eur Radiol 2003;13:686-689
  3. Hauger O, Dumont E, Chateil JF, Moinard M, Diard F. Water excitation as an alternative to fat saturation in MR imaging: preliminary results in musculoskeletal imaging. Radiology 2002;224:657-663 https://doi.org/10.1148/radiol.2243011227
  4. Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF. Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging 2005;21:476-481 https://doi.org/10.1002/jmri.20276
  5. Kornaat PR, Doornbos J, van der Molen AJ, Kloppenburg M, Nelissen RG, Hogendoorn PC, et al. Magnetic resonance imaging of knee cartilage using a water selective balanced steady-state free precession sequence. J Magn Reson Imaging 2004;20:850-856 https://doi.org/10.1002/jmri.20194
  6. Ruehm S, Zanetti M, Romero J, Hodler J. MRI of patellar articular cartilage: evaluation of an optimized gradient echo sequence (3D-DESS). J Magn Reson Imaging 1998;8:1246-1251 https://doi.org/10.1002/jmri.1880080611
  7. Saadat E, Jobke B, Chu B, Lu Y, Cheng J, Li X, et al. Diagnostic performance of in vivo 3-T MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference. Eur Radiol 2008;18:2292-2302 https://doi.org/10.1007/s00330-008-0989-7
  8. Schaefer FK, Kurz B, Schaefer PJ, Fuerst M, Hedderich J, Graessner J, et al. Accuracy and precision in the detection of articular cartilage lesions using magnetic resonance imaging at 1.5 Tesla in an in vitro study with orthopedic and histopathologic correlation. Acta Radiol 2007;48:1131-1137 https://doi.org/10.1080/02841850701549583
  9. Bauer JS, Barr C, Henning TD, Malfair D, Ma CB, Steinbach L, et al. Magnetic resonance imaging of the ankle at 3.0 Tesla and 1.5 Tesla in human cadaver specimens with artifi cially created lesions of cartilage and ligaments. Invest Radiol 2008;43:604-611 https://doi.org/10.1097/RLI.0b013e31817e9ada
  10. Iwama Y, Fujii M, Shibanuma H, Muratsu H, Kurosaka M, Kawamitsu H, et al. High-resolution MRI using a microscopy coil for the diagnosis of recurrent lateral patellar dislocation. Radiat Med 2006;24:327-334 https://doi.org/10.1007/s11604-006-0031-4
  11. Yoshioka H, Tanaka T, Ueno T, Shindo M, Carrino JA, Lang P, et al. High-resolution MR imaging of the proximal zone of the lunotriquetral ligament with a microscopy coil. Skeletal Radiol 2006;35:288-294 https://doi.org/10.1007/s00256-005-0070-4
  12. Hardy PA, Recht MP, Piraino DW. Fat suppressed MRI of articular cartilage with a spatial-spectral excitation pulse. J Magn Reson Imaging 1998;8:1279-1287 https://doi.org/10.1002/jmri.1880080615
  13. Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996;198:209-212 https://doi.org/10.1148/radiology.198.1.8539380
  14. Sonin AH, Pensy RA, Mulligan ME, Hatem S. Grading articular cartilage of the knee using fast spin-echo proton densityweighted MR imaging without fat suppression. AJR Am J Roentgenol 2002;179:1159-1166 https://doi.org/10.2214/ajr.179.5.1791159
  15. Mohr A, Roemer FW, Genant HK, Liess C. Using fat-saturated proton density-weighted MR imaging to evaluate articular cartilage. AJR Am J Roentgenol 2003;181:280-281 https://doi.org/10.2214/ajr.181.1.1810280a
  16. Yoshioka H, Stevens K, Hargreaves BA, Steines D, Genovese M, Dillingham MF, et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 2004;20:857-864 https://doi.org/10.1002/jmri.20193
  17. Link TM, Stahl R, Woertler K. Cartilage imaging: motivation, techniques, current and future signifi cance. Eur Radiol 2007;17:1135-1146 https://doi.org/10.1007/s00330-006-0453-5
  18. Disler DG. Fat-suppressed three-dimensional spoiled gradientrecalled MR imaging: assessment of articular and physeal hyaline cartilage. AJR Am J Roentgenol 1997;169:1117-1123 https://doi.org/10.2214/ajr.169.4.9308475
  19. Peterfy CG, van Dijke CF, Janzen DL, Glüer CC, Namba R, Majumdar S, et al. Quantifi cation of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology 1994;192:485-491 https://doi.org/10.1148/radiology.192.2.8029420
  20. Zur Y. Design of improved spectral-spatial pulses for routine clinical use. Magn Reson Med 2000;43:410-420 https://doi.org/10.1002/(SICI)1522-2594(200003)43:3<410::AID-MRM13>3.0.CO;2-3
  21. Mohr A. The value of water-excitation 3D FLASH and fatsaturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 2003;32:396-402 https://doi.org/10.1007/s00256-003-0635-z
  22. Yoshioka H, Stevens K, Genovese M, Dillingham MF, Lang P. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology 2004;231:31-38 https://doi.org/10.1148/radiol.2311020453
  23. Hargreaves BA, Gold GE, Beaulieu CF, Vasanawala SS, Nishimura DG, Pauly JM. Comparison of new sequences for high-resolution cartilage imaging. Magn Reson Med 2003;49:700-709 https://doi.org/10.1002/mrm.10424
  24. Scheffl er K. Fast frequency mapping with balanced SSFP: theory and application to proton-resonance frequency shift thermometry. Magn Reson Med 2004;51:1205-1211 https://doi.org/10.1002/mrm.20081
  25. Vlaardingerbroek MT, den Boer JA. Magnetic resonance imaging: theory and practice, 3rd ed. New York: Springer, 2003
  26. Duc SR, Pfi rrmann CW, Schmid MR, Zanetti M, Koch PP, Kalberer F, et al. Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology 2007;245:216-223 https://doi.org/10.1148/radiol.2451060990
  27. Barr C, Bauer JS, Malfair D, Ma B, Henning TD, Steinbach L, et al. MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens. Eur Radiol 2007;17:1518-1528 https://doi.org/10.1007/s00330-006-0446-4
  28. Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology 2005;234:245-249 https://doi.org/10.1148/radiol.2341040041
  29. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004;8:355-368 https://doi.org/10.1055/s-2004-861764
  30. Yao L, Gentili A, Thomas A. Incidental magnetization transfer contrast in fast spin-echo imaging of cartilage. J Magn Reson Imaging 1996;6:180-184 https://doi.org/10.1002/jmri.1880060132
  31. Prock T, Collins D, Leach MO. Numerical evaluation of shaped surface coil sensitivity at 63 MHz. Phys Med Biol 2001;46:1753-1765 https://doi.org/10.1088/0031-9155/46/7/302
  32. Gensanne D, Josse G, Lagarde JM, Vincensini D. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils. Phys Med Biol 2006;51:2843-2855 https://doi.org/10.1088/0031-9155/51/11/011
  33. Hurson C, Kashir A, Flavin R, Kelly I. Routine patellar resurfacing using an inset patellar technique. Int Orthop 2010;34:955-958 https://doi.org/10.1007/s00264-009-0831-0
  34. Hantes ME, Zachos VC, Bargiotas KA, Basdekis GK, Karantanas AH, Malizos KN. Patellar tendon length after anterior cruciate ligament reconstruction: a comparative magnetic resonance imaging study between patellar and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 2007;15:712-719 https://doi.org/10.1007/s00167-006-0272-x
  35. Niitsu M, Ikeda K. Magnetic resonance microscopic images with 50-mm fi eld-of-view of the medial aspect of the knee. Acta Radiol 2004;45:760-768 https://doi.org/10.1080/02841850410001367

Cited by

  1. 3D isotropic turbo spin-echo intermediate-weighted sequence with refocusing control in knee imaging: comparison study with 3D isotropic fast-field echo sequence vol.52, pp.10, 2011, https://doi.org/10.1258/ar.2011.110328
  2. Qualitative and Quantitative Assessment of Isotropic Ankle Magnetic Resonance Imaging: Three-Dimensional Isotropic Intermediate-Weighted Turbo Spin Echo versus Three-Dimensional Isotropic Fast Field E vol.13, pp.4, 2011, https://doi.org/10.3348/kjr.2012.13.4.443
  3. Kondromalazi Patella ve İşkence vol.17, pp.3, 2011, https://doi.org/10.17986/blm.201217334
  4. Knee Derangements: Comparison of Isotropic 3D Fast Spin-Echo, Isotropic 3D Balanced Fast Field-Echo, and Conventional 2D Fast Spin-Echo MR Imaging vol.268, pp.3, 2013, https://doi.org/10.1148/radiol.13121990
  5. Accuracy of Preoperative MRI with Microscopy Coil in Evaluation of Primary Tumor Thickness of Malignant Melanoma of the Skin with Histopathologic Correlation vol.14, pp.2, 2011, https://doi.org/10.3348/kjr.2013.14.2.287
  6. Correlation Between Subcutaneous Knee Fat Thickness and Chondromalacia Patellae on Magnetic Resonance Imaging of the Knee vol.64, pp.3, 2011, https://doi.org/10.1016/j.carj.2012.04.003
  7. 3.0T 무릎자기공명영상에서 3차원 FFE-PROSET 기법을 이용한 관절연골평가 : 2차원 TSE-SPIR 기법과 비교 vol.11, pp.12, 2011, https://doi.org/10.14400/jdpm.2013.11.12.599
  8. Does the Reporting Quality of Diagnostic Test Accuracy Studies, as Defined by STARD 2015, Affect Citation? vol.17, pp.5, 2016, https://doi.org/10.3348/kjr.2016.17.5.706
  9. A new MRI grading system for chondromalacia patellae vol.58, pp.4, 2011, https://doi.org/10.1177/0284185116654332