DOI QR코드

DOI QR Code

SOME PROPERTIES INVOLVING THE HIGHER ORDER q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α, β) VIA THE p-ADIC q-INTEGRAL ON ℤp

  • Seo, Jong Jin (Department of Applied Mathematics Pukyong National University) ;
  • Araci, Serkan (Faculty of Science and Arts, Department of Mathematics University of Gaziantep)
  • 투고 : 2011.10.15
  • 심사 : 2011.11.24
  • 발행 : 2011.12.30

초록

The main properties of this paper is to describe the higher order q-Genocchi polynomials with weight $({\alpha},{\beta})$. However, we derive some interesting properties concerning this type of polynomials.

키워드

참고문헌

  1. S. Araci, D. Erdal, and D-J. Kang, Some New Properties on the q-Genocchi numbers and Polynomials associated with q-Bernstein polynomials, Honam Mathematical J. 33 (2011), no. 2, 261-270. https://doi.org/10.5831/HMJ.2011.33.2.261
  2. S. Araci, and M. Acikgoz, Some identities concerning the (h; q)-Genocchi numbers and polynomials via the p-adic q-integral on $\mathbb{Z}_{p}$ and q-Bernstein polynomials,(Submitted)
  3. S. Araci, J. J. Seo, and D. Erdal, New Construction weighted (h; q)- Genocchi numbers and Polynomials Related to Zeta Type Functions, Discrete Dynamics in Nature and Society 2011, Article ID 487490, 7 pages, doi:10.1155/2011/487490.
  4. S. Araci, D. Erdal, and J. J. Seo, A study on the fermionic p-adic q-integral representation on $\mathbb{Z}_{p}$ Associated with weighted q-Bernstein and q-Genocchi polynomials, Abstract and Applied Analysis(in press).
  5. S. H. Rim, J. H. Jin, E. J. Moon, and S. J. Lee, Some Identities on the q-Genocchi polynomials of Higher-Order and q-Stirling Numbers by the Fermionic p-adic q-integral, International Journal of Mathematics and Mathematical Sciences 2010, Article ID 860280, 14 pages, doi:10.1155/2010/860280.
  6. A. Bayad, and T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 20 (2010), no. 2, 247- 253.
  7. H. Jolany, and H. Sahrifi, Some Results for the Apostol-Genocchi polynomials of Higher Order, Accepted in Bulletin of the Malaysian Mathematical Sciences Society, arXiv:1104.1501v1 [math. NT].
  8. K. W. Hwang, D. V. Dolgy, S. H. Lee, and T. Kim, On the Higher-Order q- Euler numbers and polynomials with weight $\alpha$, Discrete Dynamics in Nature and Society, 2011, Article ID 354329, 12 pages, doi:10.1155/2011/354329.
  9. S. H. Rim, and J. H. Jong, A note on the modified q-Euler numbers and polynomials with weight $\alpha$, International Mathematical Forum 6 (2011), no. 65, 3245-3250.
  10. H. Y. Lee, N. S. Jung, and C. S. Ryoo, Some identities of the twisted q- Genocchi numbers and polynomials with weight $\alpha$ and q-Bernstein polynomials with weight $\alpha$, Abstract and Applied Analysis(in press)
  11. L. C. Jang, A note on some properties of the weighted q-Genocchi numbers and polynomials, Journal of Applied Mathematics(in press).
  12. T. Kim, A note on q-Bernstein polynomials, Russ. J. Math. Phys. 18 (2011), 41-50.
  13. T. Kim, B. Lee, J. Choi, and Y. H. Kim, A new approach of q-Euler numbers and polynomials, Proc. Jangjeon Math. Soc. 14 (2011), no. 1, 7-14.
  14. T. Kim, and J. Choi, On The q-Bernoulli numbers and polynomials with weight $\alpha$, Abstract and Applied Analysis(in press).
  15. T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), 1458-1465. https://doi.org/10.1016/j.jmaa.2006.03.037
  16. T. Kim, On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (2008), 481-486. arXiv:0801.0978v1 [math.NT] https://doi.org/10.1134/S1061920808040055
  17. T. Kim, On the weighted q-Bernoulli numbers and polynomials, Advanced Studies in Contemporary Mathematics 21 (2011), no. 2, 207-215, http://arxiv.org/abs/1011.5305.
  18. T. Kim, q-Volkenborn integration, Russ. J. Math. phys. 9 (2002) ; 288-299.
  19. T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), no. 1, 15-27. https://doi.org/10.2991/jnmp.2007.14.1.3
  20. T. Kim, New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys. 17 (2010), no. 2, 218-225. https://doi.org/10.1134/S1061920810020068
  21. T. Kim, Some identities on the q-Euler polynomials of higher order and q- Stirling numbers by the fermionic p-adic integral on $\mathbb{Z}_{p}$, Russ. J. Math. Phys. 16 (2009), no. 4,484-491. https://doi.org/10.1134/S1061920809040037
  22. C. S. Ryoo, A note on the weighted q-Euler numbers and polynomials, Advan. Stud. Contemp. Math. 21 (2011), 47-54.