The Susceptibility Vessel Sign of the Middle Cerebral Artery on the $T2^{*}$-Weighted Gradient Echo Imaging: Semi-quantification to Predict the Response to Multimodal Intra-Arterial Thrombolysis

$T2^{*}$ 강조영상에서 보이는 중뇌동맥의 혈관자화징후: 다중방식 동맥내 혈전용해술 후 재개통 예측을 위한 반정량화

  • Youn, Sung-Won (Department of Radiology, Catholic University of Daegu Medical Center) ;
  • Jung, Cheol-Kyu (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Choi, Byung-Se (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Kim, Jae-Hyoung (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Kwon, O-Ki (Department of Neurosurgery, Seoul National University Bundang Hospital) ;
  • Han, Moon-Ku (Department of Neurology, Seoul National University Bundang Hospital) ;
  • Bae, Hee-Joon (Department of Neurology, Seoul National University Bundang Hospital) ;
  • Kwon, Bae-Ju (Department of Radiology, Kwandong University Myongji Hospital) ;
  • Han, Moon-Hee (Department of Radiology, Seoul National University Hospital)
  • 윤성원 (대구가톨릭대학교병원 영상의학과) ;
  • 정철규 (분당서울대학교병원 영상의학과) ;
  • 최병세 (분당서울대학교병원 영상의학과) ;
  • 김재형 (분당서울대학교병원 영상의학과) ;
  • 권오기 (분당서울대학교병원 신경외과) ;
  • 한문구 (분당서울대학교병원 신경과) ;
  • 배희준 (분당서울대학교병원 신경과) ;
  • 권배주 (관동대학교 명지병원 영상의학과) ;
  • 한문희 (서울대학교병원 영상의학과)
  • Published : 2011.01.01

Abstract

Purpose: We wanted to determine whether or not the "susceptibility asymmetry index" (SAI) of acute stroke on the $T2^{*}$-weighted image is related with successful recanalization using multimodal intra-arterial thrombolysis (IAT). Materials and Methods: The 81 patients who underwent multimodal IAT for middle cerebral artery (MCA) territory acute stroke were included in this retrospective study. The multimodal IAT included intra-arterial urokinase infusion, clot disruption by a microwire, microcatheter and balloon manipulation, and balloon angioplasty and/or stenting for the flow-limiting stenosis. The diameter of the susceptibility vessel sign was measured on the $T2^{*}$-weighted gradient echo imaging (GRE), and the diameter of the contralateral normal MCA at the corresponding level was measured on magnetic resonance angiography (MRA); the ratio between these two diameters was defined as the susceptibility asymmetry index. The relation between the TICI (Thrombolysis In Cerebral Infarction) score of 2-3 after multimodal IAT and the SAI was assessed. The receiver operating characteristic (ROC) curve analysis was performed on the SAI to predict a TICI score of 2-3 after multimodal IAT. Results: The mean SAI of 81 patients was 1.66 ${\pm}$ 0.66. Seventy nine percent of the patients had a TICI of 2-3 after multimodal IAT. According to the ROC curve analysis, an SAI less than 1.3 was optimal for predicting the presence of stenotic lesion after recanalization (area under the curve: 0.821, sensitivity: 88.2%, specificity: 69.8%, p=0.0001), and the SAI ${\leq}$1.61 (area under the curve: 0.652, sensitivity: 60.9%, specificity: 70.6%, p=0.0226) could predict a TICI score of 2-3. The TICI score of 2-3 after multimodal IAT was achieved in 88.6% of the cases with a SAI ${\leq}$ 1.61 and in 67.6% of the cases with a SAI >1.61 (p=0.028). Conclusion: The lower SAI on $T2^{*}$-GRE could predict stenotic lesion and successful recanalization after performing IAT.

목적: 급성 뇌경색의 $T2^{*}$ 경사자장영상에서"자화율비대칭지수(susceptibility asymmetry index, 이하 SAI)"가 다중방식 동맥 내 혈전용해술의 재개통율과 관계가 있는지를 알아보고자 한다. 대상과 방법: 중뇌동맥 영역의 급성뇌경색에 대해서 다중방식 동맥 내 혈전용해술을 시행한 81명의 환자에 대해서 후향적 분석을 하였다. 다중방식 동맥 내 혈전용해술에는 동맥 내 유로키나아제 주입, 미세철사, 미세도관 및 풍선을 이용한 혈전분해, 혈류장애를 일으키는 협착에 대한 풍선 혈관성형술 및 스텐트 설치술을 포함한다. $T2^{*}$ 경사자장영상에서 혈관자화징후의 직경과 자기공명혈관촬영술(MRA)에서 상응하는 반대측 정상 혈관의 직경의 비를 자화율비대칭지수로 정의하였다. 동맥 내 혈전용해술과 자화율비대칭지수와의 관계를 평가하였고, 자화율비대칭지수와 TICI (Thrombolysis In Cerebral Infarction) 2-3 재개통율에 대해서 수신자판단특성 곡선(receiver operating characteristic curve) 분석을 시행하여 TICI 2-3를 예측하는데 필요한 한계치를 구하였다. 결과: 81명 환자의 자화율비대칭지수는 평균 1.66 ${\pm}$ 0.66이었다. 수신자판단특성 곡선 분석에 의하면 SAI가 1.3 미만에서 협착성 병변을 잘 예측할 수 있었고 (곡선아래면적, 0.821; 예민도, 88.2%; 특이도, 69.8%, p=0.0001). 자화율비대칭지수 1.61 이하인 경우에 높은 재개통율을 예측할 수 있고(곡선아래면적, 0.652; 예민도, 60.9%; 특이도, 70.6%; p=0.0226), 1.61 이하인 경우에 88.6%, 1.61 초과인 경우 환자의 67.6%정도에서 다중방식 동맥 내 혈전용해술로 TICI 2-3의 재개통을 시킬 수 있었다 (p=0.028). 결론: $T2^{*}$ 경사자장영상에서 자화율비대칭지수가 낮은 경우에 협착성 병변을 예측할 수 있고, 다중방식 동맥 내 혈전용해술로 좀 더 높은 재개통율을 보일 수 있다.

Keywords

References

  1. Lee DH, Kang DW, Ahn JS, Choi CG, Kim SJ, Suh DC. Imaging of the ischemic penumbra in acute stroke. Korean J Radiol 2005;6:64-74 https://doi.org/10.3348/kjr.2005.6.2.64
  2. Rovira A, Orellana P, Alvarez-Sabin J, Arenillas JF, Aymerich X, Grive E, et al. Hyperacute ischemic stroke: middle cerebral artery susceptibility sign at echo-planar gradient-echo MR imaging. Radiology 2004;232:466-473 https://doi.org/10.1148/radiol.2322030273
  3. Cho KH, Kim JS, Kwon SU, Cho AH, Kang DW. Significance of susceptibility vessel sign on T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke 2005;36:2379-2383 https://doi.org/10.1161/01.STR.0000185932.73486.7a
  4. Flacke S, Urbach H, Keller E, Traber F, Hartmann A, Textor J, et al. Middle cerebral artery (MCA) susceptibility sign at susceptibility- based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology 2000;215:476-482 https://doi.org/10.1148/radiology.215.2.r00ma09476
  5. Kim HS, Lee DH, Choi CG, Kim SJ, Suh DC. Progression of middle cerebral artery susceptibility sign on T2*-weighted images: its effect on recanalization and clinical outcome after thrombolysis. AJR Am J Roentgenol 2006;187:W650-W657 https://doi.org/10.2214/AJR.05.0447
  6. Molina CA, Montaner J, Arenillas JF, Ribo M, Rubiera M, Alvarez- Sabin J. Differential pattern of tissue plasminogen activator-induced proximal middle cerebral artery recanalization among stroke subtypes. Stroke 2004;35:486-490 https://doi.org/10.1161/01.STR.0000110219.67054.BF
  7. Schellinger PD, Chalela JA, Kang DW, Latour LL, Warach S. Diagnostic and prognostic value of early MR Imaging vessel signs in hyperacute stroke patients imaged <3 hours and treated with recombinant tissue plasminogen activator. AJNR Am J Neuroradiol 2005;26:618-624
  8. Blinc A, Keber D, Lahajnar G, Zupancic I, Zorec-Karlovsek M, Demsar F. Magnetic resonance imaging of retracted and nonretracted blood clots during fibrinolysis in vitro. Haemostasis 1992;22:195-201
  9. Taber KH, Hayman LA, Herrick RC, Kirkpatrick JB. Importance of clot structure in gradient-echo magnetic resonance imaging of hematoma. J Magn Reson Imaging 1996;6:878-883 https://doi.org/10.1002/jmri.1880060607
  10. Viereck J, Ruberg FL, Qiao Y, Perez AS, Detwiller K, Johnstone M, et al. MRI of atherothrombosis associated with plaque rupture. Arterioscler Thromb Vasc Biol 2005;25:240-245
  11. Marder VJ, Chute DJ, Starkman S, Abolian AM, Kidwell C, Liebeskind D, et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke 2006;37:2086-2093 https://doi.org/10.1161/01.STR.0000230307.03438.94
  12. Adams HP Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993;24:35-41 https://doi.org/10.1161/01.STR.24.1.35
  13. Ueda T, Sakaki S, Nochide I, Kumon Y, Kohno K, Ohta S. Angioplasty after intra-arterial thrombolysis for acute occlusion of intracranial arteries. Stroke 1998;29:2568-2574 https://doi.org/10.1161/01.STR.29.12.2568
  14. Brott T, Adams HP Jr., Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke 1989;20:864-870 https://doi.org/10.1161/01.STR.20.7.864
  15. Kase CS, Furlan AJ, Wechsler LR, Higashida RT, Rowley HA, Hart RG, et al. Cerebral hemorrhage after intra-arterial thrombolysis for ischemic stroke: the PROACT II trial. Neurology 2001;57:1603-1610 https://doi.org/10.1212/WNL.57.9.1603
  16. Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B, Barr J, et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 2003;34:e109-e137 https://doi.org/10.1161/01.STR.0000082721.62796.09
  17. Kidwell CS, Chalela JA, Saver JL, Starkman S, Hill MD, Demchuk AM, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 2004;292:1823-1830 https://doi.org/10.1001/jama.292.15.1823
  18. Molina CA. Imaging the clot: does clot appearance predict the efficacy of thrombolysis? Stroke 2005;36:2333-2334 https://doi.org/10.1161/01.STR.0000185933.44619.1b
  19. Leach JL, Strub WM, Gaskill-Shipley MF. Cerebral venous thrombus signal intensity and susceptibility effects on gradient recalledecho MR imaging. AJNR Am J Neuroradiol 2007;28:940-945
  20. Assouline E, Benziane K, Reizine D, Guichard JP, Pico F, Merland JJ, et al. Intra-arterial thrombus visualized on T2* gradient echo imaging in acute ischemic stroke. Cerebrovasc Dis 2005;20:6-11 https://doi.org/10.1159/000086120
  21. Barreto AD, Albright KC, Hallevi H, Grotta JC, Noser EA, Khaja AM, et al. Thrombus burden is associated with clinical outcome after intra-arterial therapy for acute ischemic stroke. Stroke 2008;39:3231-3235 https://doi.org/10.1161/STROKEAHA.108.521054