DOI QR코드

DOI QR Code

Infrared-sensitive pit organ and trigeminal ganglion in the crotaline snakes

  • Moon, Chang-Jong (Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University)
  • Published : 2011.03.31

Abstract

The infrared (IR) receptors in the pit organ of crotaline snakes are very sensitive to temperature. The sensitivity to IR radiation is much greater in crotaline snakes than in boid snakes because they have a thermosensitive membrane suspended in a pair of pits that comprise the pit organ. The vasculature of the pit membrane, which is located near IR-sensitive terminal nerve masses, the IR receptors, supplies the blood necessary to provide cooling and the energy and oxygen that the IR receptors require. The ophthalmic and maxillary branches of the trigeminal nerve innervate the pit membrane. In crotaline snakes, the trigeminal ganglion (TG) is divided into the ophthalmic and maxillomandibular ganglia; a prominent septum further separates the two divisions of the maxillomandibular ganglion. The TG neurons in the ophthalmic ganglion and the maxillary division of the maxillomandibular ganglion relay IR sensation to the brain. This article reviews the IR-sensitive pit organ and trigeminal sensory system structures in crotaline snakes.

Keywords

References

  1. Bullock TH, Diecke FP. Properties of an infra-red receptor. J Physiol 1956;134:47-87.
  2. Kishida R, Goris RC, Terashima S, Dubbeldam JL. A suspected infrared-recipient nucleus in the brainstem of the vampire bat, Desmodus rotundus. Brain Res 1984;322:351-5. https://doi.org/10.1016/0006-8993(84)90132-X
  3. Kurten L, Schmidt U. Thermoperception in the common vampire bat (Desmodus rotundus). J Comp Physiol A 1982;146:223-8. https://doi.org/10.1007/BF00610241
  4. Evans WG. Infra-red receptors in Melanophila acuminata degeer. Nature 1964;202:211.
  5. Schmitz H, Bleckmann H. The photomechanic infrared receptor for the detection of forest fires in the beetle Melanophila acuminata (Coleoptera: Buprestidae). J Comp Physiol A 1998;182:647-57. https://doi.org/10.1007/s003590050210
  6. Schmitz H, Wasserthal LT. Antennal thermoreceptors and wing-thermosensitivity of heliotherm butterflies: their possible role in thermoregulatory behavior. J Insect Physiol 1993;39:1007-19. https://doi.org/10.1016/0022-1910(93)90125-B
  7. Schmitz H. Thermal characterization of butterfly wings 1. Absorption in relation to different color, surface structure and basking type. J Therm Biol 1994;19:403-12. https://doi.org/10.1016/0306-4565(94)90039-6
  8. Lazzari CR, Nunez JA. The response to radiant heat and the estimation of the temperature of distant sources in Triatoma infestans. J Insect Physiol 1989;35:525-9. https://doi.org/10.1016/0022-1910(89)90060-7
  9. Newman EA, Hartline PH. The infrared "vision" of snakes. Sci Am 1982;246:116-27.
  10. Campbell AL, Naik RR, Sowards L, Stone MO. Biological infrared imaging and sensing. Micron 2002;33:211-25. https://doi.org/10.1016/S0968-4328(01)00010-5
  11. Terashima SI, Goris RC, Katsuki Y. Structure of warm fiber terminals in the pit membrane of vipers. J Ultrastruct Res 1970;31:494-506. https://doi.org/10.1016/S0022-5320(70)90165-6
  12. Barrett R, Maderson PF, Meszler RM. The pit organs of snakes. In: Gans C, editor. Biology of Reptilia. London: Academic Press; 1970. p.277-314.
  13. de Cock Buning T. Thermal sensitivity as a specialization for prey capture and feeding in snakes. Am Zool 1983;23:363-75.
  14. Amemiya F, Nakano M, Goris RC, Kadota T, Atobe Y, Funakoshi K, Hibiya K, Kishida R. Microvasculature of crotaline snake pit organs: possible function as a heat exchange mechanism. Anat Rec 1999;254:107-15. https://doi.org/10.1002/(SICI)1097-0185(19990101)254:1<107::AID-AR14>3.0.CO;2-Y
  15. Amemiya F, Ushiki T, Goris RC, Atobe Y, Kusunoki T. Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings. Anat Rec 1996;246:135-46. https://doi.org/10.1002/(SICI)1097-0185(199609)246:1<135::AID-AR15>3.0.CO;2-Q
  16. Moon C, Terashima S. Response of the infrared receptors of a crotaline snake to ethanol. Neurosci Lett 2002;334:29-32. https://doi.org/10.1016/S0304-3940(02)01062-5
  17. Moon C. An investigation of the effects of ruthenium red, nitric oxide and endothelin-1 on infrared receptor activity in a crotaline snake. Neuroscience 2004;124:913-8. https://doi.org/10.1016/j.neuroscience.2003.12.011
  18. Moon C, Terashima S, Yasuzumi F, Shin T. Snake infrared receptors respond to dimethylsulfoxide in the blood stream. Cell Mol Neurobiol 2004;24:749-56. https://doi.org/10.1007/s10571-004-6916-9
  19. Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sanchez EE, Perez JC, Weissman JS, Julius D. Molecular basis of infrared detection by snakes. Nature 2010;464:1006-11. https://doi.org/10.1038/nature08943
  20. Panzano VC, Kang K, Garrity PA. Infrared snake eyes: TRPA1 and the thermal sensitivity of the snake pit organ. Sci Signal 2010;3:pe22. https://doi.org/10.1126/scisignal.3127pe22
  21. Gruberg ER, Kicliter E, Newman EA, Kass L, Hartline PH. Connections of the tectum of the rattlesnake Crotalus viridis: an HRP study. J Comp Neurol 1979;188:31-41. https://doi.org/10.1002/cne.901880104
  22. Molenaar GJ, Fizaan-Oostveen JL. Ascending projections from the lateral descending and common sensory trigeminal nuclei in python. J Comp Neurol 1980;189:555-72. https://doi.org/10.1002/cne.901890308
  23. Kishida R, Amemiya F, Kusunoki T, Terashima S. A new tectal afferent nucleus of the infrared sensory system in the medulla oblongata of Crotaline snakes. Brain Res 1980;195:271-9. https://doi.org/10.1016/0006-8993(80)90064-5
  24. Newman EA, Gruberg ER, Hartline PH. The infrared trigemino-tectal pathway in the rattlesnake and in the python. J Comp Neurol 1980;191:465-77. https://doi.org/10.1002/cne.901910309
  25. Stark D. Cranio-cerebral relations in recent reptiles. In: Gans C, Northcutt RC, Ulinski P, editors. Biology of the Reptilia. New York: Academic Press; 1979. p.1-38.
  26. Molenaar GJ. The sensory trigeminal system of a snake in the possession of infrared receptors. I. The sensory trigeminal nuclei. J Comp Neurol 1978;179:123-35. https://doi.org/10.1002/cne.901790108
  27. Kishida R, Terashima SI, Goris RC, Kusunoki T. Infrared sensory neurons in the trigeminal ganglia of crotaline snakes: transganglionic HRP transport. Brain Res 1982;241:3-10. https://doi.org/10.1016/0006-8993(82)91223-9
  28. Sekitani-Kumagai M, Kadota T, Goris RC, Kusunoki T, Terashima S. Calcitonin gene-related peptide immunoreactivity in the trigeminal ganglion of Trimeresurus flavoviridis. Neurosci Res 1995;22:287-95. https://doi.org/10.1016/0168-0102(95)00905-9
  29. Moon C, Terashima S, Ahn M, Kang J, Shin T. Immunohistochemical analysis of neuronal nitric oxide synthase in the trigeminal ganglia of the crotaline snake Trimeresurus flavoviridis. Neurosci Lett 2002;319:21-4. https://doi.org/10.1016/S0304-3940(01)02506-X
  30. Moon C, Terashima S, Shin T. Immunohistochemical study of endothelial nitric oxide synthase in the trigeminal ganglia of a crotaline snake Trimeresurus flavoviridis. J Vet Med Sci 2004;66:1007-9. https://doi.org/10.1292/jvms.66.1007
  31. Moon C, Terashima S, Shin T. Immunohistochemical localization of the delta subspecies of protein kinase C in the trigeminal sensory system of Trimeresurus flavoviridis, an infrared-sensitive snake. Neurosci Lett 2003;338:233-6. https://doi.org/10.1016/S0304-3940(02)01421-0

Cited by

  1. Clinical and Pathological Findings in a Red-Tailed Boa Constrictor (Boa constrictor constrictor) with a Primary Neural Neoplasm within the Diencephalon and Mesencephalon vol.26, pp.3, 2011, https://doi.org/10.5818/1529-9651-26.3-4.85
  2. Trigeminal neurons detect cellphone radiation: Thermal or nonthermal is not the question vol.36, pp.2, 2011, https://doi.org/10.1080/15368378.2016.1194294