References
- Perrin MH, Sutton SW, Cervini LA, Rivier JE, Vale WW. Comparison of an agonist, urocortin, and an antagonist, astressin, as radioligands for characterization of corticotropin-releasing factor receptors. J Pharmacol Exp Ther 1999;288:729-34.
- Perrin MH, Vale WW. Corticotropin releasing factor receptors and their ligand family. Ann N Y Acad Sci 1999;885:312-28.
- Emeric-Sauval E. Corticotropin-releasing factor (CRF): a review. Psychoneuroendocrinology 1986;11:277-94. https://doi.org/10.1016/0306-4530(86)90014-4
- Olschowka JA, O'Donohue TL, Mueller GP, Jacobowitz DM. The distribution of corticotropin releasing factor-like immunoreactive neurons in rat brain. Peptides 1982;3:995-1015. https://doi.org/10.1016/0196-9781(82)90071-7
- Merchenthaler I, Hynes MA, Vigh S, Shally AV, Petrusz P. Immunocytochemical localization of corticotropin releasing factor (CRF) in the rat spinal cord. Brain Res 1983;275:373-7. https://doi.org/10.1016/0006-8993(83)91001-6
- Skofitsch G, Zamir N, Helke CJ, Savitt JM, Jacobowitz DM. Corticotropin releasing factor-like immunoreactivity in sensory ganglia and capsaicin sensitive neurons of the rat central nervous system: colocalization with other neuropeptides. Peptides 1985;6:307-18. https://doi.org/10.1016/0196-9781(85)90057-9
- Kawatani M, Suzuki T, de Groat WC. Corticotropin releasing factor-like immunoreactivity in afferent projections to the sacral spinal cord of the cat. J Auton Nerv Syst 1996;61:218-26. https://doi.org/10.1016/S0165-1838(96)00083-5
- De Souza EB. Corticotropin-releasing factor receptors in the rat central nervous system: characterization and regional distribution. J Neurosci 1987;7:88-100.
- Bell JA, de Souza EB. Functional corticotropin-releasing factor receptors in neonatal rat spinal cord. Peptides 1988;9:1317-22. https://doi.org/10.1016/0196-9781(88)90198-2
- Lariviere WR, Melzack R. The role of corticotropin-releasing factor in pain and analgesia. Pain 2000;84:1-12. https://doi.org/10.1016/S0304-3959(99)00193-1
- Amit Z, Galina ZH. Stress-induced analgesia: adaptive pain suppression. Physiol Rev 1986;66:1091-120.
- Mousa SA, Bopaiah CP, Richter JF, Yamdeu RS, Schafer M. Inhibition of inflammatory pain by CRF at peripheral, spinal and supraspinal sites: involvement of areas coexpressing CRF receptors and opioid peptides. Neuropsychopharmacology 2007;32:2530-42. https://doi.org/10.1038/sj.npp.1301393
- Ji G, Neugebauer V. Differential effects of CRF1 and CRF2 receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. J Neurophysiol 2007;97:3893-904. https://doi.org/10.1152/jn.00135.2007
- Fu Y, Neugebauer V. Differential mechanisms of CRF1 and CRF2 receptor functions in the amygdala in pain-related synaptic facilitation and behavior. J Neurosci 2008;28:3861-76. https://doi.org/10.1523/JNEUROSCI.0227-08.2008
- Studeny S, Vizzard MA. Corticotropin-releasing factor (CRF) expression in postnatal and adult rat sacral parasympathetic nucleus (SPN). Cell Tissue Res 2005;322:339-52. https://doi.org/10.1007/s00441-005-0014-2
- Korosi A, Kozicz T, Richter J, Veening JG, Olivier B, Roubos EW. Corticotropin-releasing factor, urocortin 1, and their receptors in the mouse spinal cord. J Comp Neurol 2007;502:973-89. https://doi.org/10.1002/cne.21347
- Sengupta JN. Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol 2009;(194):31-74.
- Cabot PJ. Immune-derived opioids and peripheral antinociception. Clin Exp Pharmacol Physiol 2001;28:230-2. https://doi.org/10.1046/j.1440-1681.2001.03425.x
- Ock J, Lee H, Kim S, Lee WH, Choi DK, Park EJ, Kim SH, Kim IK, Suk K. Induction of microglial apoptosis by corticotropin-releasing hormone. J Neurochem 2006;98:962-72. https://doi.org/10.1111/j.1471-4159.2006.03933.x
- Narita M, Yoshida T, Nakajima M, Narita M, Miyatake M, Takagi T, Yajima Y, Suzuki T. Direct evidence for spinal cord microglia in the development of a neuropathic pain-like state in mice. J Neurochem 2006;97:1337-48. https://doi.org/10.1111/j.1471-4159.2006.03808.x
- Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992;50:355-63. https://doi.org/10.1016/0304-3959(92)90041-9
- Lee SE, Kim JH. Involvement of substance P and calcitonin gene-related peptide in development and maintenance of neuropathic pain from spinal nerve injury model of rat. Neurosci Res 2007;58:245-9. https://doi.org/10.1016/j.neures.2007.03.004
- Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994;53:55-63. https://doi.org/10.1016/0165-0270(94)90144-9
- Ikeda H, Kusudo K, Ryu PD, Murase K. Effects of corticotropin-releasing factor on plasticity of optically recorded neuronal activity in the substantia gelatinosa of rat spinal cord slices. Pain 2003;106:197-207. https://doi.org/10.1016/j.pain.2003.08.004
- Gillardon F, Klimaschewski L, Wickert H, Krajewski S, Reed JC, Zimmermann M. Expression pattern of candidate cell death effector proteins Bax, Bcl-2, Bcl-X, and c-Jun in sensory and motor neurons following sciatic nerve transection in the rat. Brain Res 1996;739:244-50. https://doi.org/10.1016/S0006-8993(96)00829-3
- Zimmermann M. Pathobiology of neuropathic pain. Eur J Pharmacol 2001;429:23-37. https://doi.org/10.1016/S0014-2999(01)01303-6
- Du F, Yin L, Shi M, Cheng H, Xu X, Liu Z, Zhang G, Wu Z, Feng G, Zhao G. Involvement of microglial cells in infrasonic noise-induced stress via upregulated expression of corticotrophin releasing hormone type 1 receptor. Neuroscience 2010;167:909-19. https://doi.org/10.1016/j.neuroscience.2010.02.060
- Stevens SL, Shaw TE, Dykhuizen E, Lessov NS, Hill JK, Wurst W, Stenzel-Poore MP. Reduced cerebral injury in CRH-R1 deficient mice after focal ischemia: a potential link to microglia and atrocytes that express CRH-R1. J Cereb Blood Flow Metab 2003;23:1151-9.
- Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996;19:312-8. https://doi.org/10.1016/0166-2236(96)10049-7
- Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 2006;26:4308-17. https://doi.org/10.1523/JNEUROSCI.0003-06.2006
- Schreiber KL, Beitz AJ, Wilcox GL. Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia. Neurosci Lett 2008;440:63-7. https://doi.org/10.1016/j.neulet.2008.05.044
- Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, Watkins LR. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005;115:71-83. https://doi.org/10.1016/j.pain.2005.02.009
- Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA. Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 2006;97:1314-26. https://doi.org/10.1111/j.1471-4159.2006.03799.x
Cited by
- Corticotropin-releasing factor mediates bone cancer induced pain through neuronal activation in rat spinal cord vol.36, pp.12, 2011, https://doi.org/10.1007/s13277-015-3670-1
- Differential Transcriptional Profiling of Damaged and Intact Adjacent Dorsal Root Ganglia Neurons in Neuropathic Pain vol.10, pp.4, 2011, https://doi.org/10.1371/journal.pone.0123342
- Hypothalamic-pituitary-adrenal axis function in traumatic spinal cord injury-related neuropathic pain: a case-control study vol.42, pp.8, 2011, https://doi.org/10.1007/s40618-019-1002-9
- Small-Molecule Ligands as Challenge for Positron Emission Tomography of Peptide Receptors in Neurons and Microglia of the Brain vol.9, pp.4, 2011, https://doi.org/10.4236/wjns.2019.94022
- Role of corticotropin-releasing factor in alcohol and nicotine addiction vol.1740, pp.None, 2020, https://doi.org/10.1016/j.brainres.2020.146850