Association Between Blood Lead Concentration and Computerized Neurobehavioral Performance in Korean Elementary School Students

초등학생들의 혈중 납 농도와 컴퓨터 신경행동검사 결과와의 관련성

  • Kim, Yeon-Cheol (Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Department of Preventive Medicine and Public Health, College of Medicine, Yeungnam University) ;
  • Jeon, Man-Joong (Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Department of Preventive Medicine and Public Health, College of Medicine, Yeungnam University) ;
  • Hong, Yun-Chul (Department of Preventive Medicine, College of Medicine, Seoul National University) ;
  • Lee, Chul-Gab (Department of Preventive Medicine, College of Medicine, Chosun University) ;
  • Ha, Mi-Na (Department of Preventive Medicine, College of Medicine, Dankook University) ;
  • Kwon, Ho-Jang (Department of Preventive Medicine, College of Medicine, Dankook University) ;
  • SaKong, Joon (Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Department of Preventive Medicine and Public Health, College of Medicine, Yeungnam University)
  • 김연철 (, 영남대학교 의과대학 부속병원 산업의학과, 영남대학교 의과대학 예방의학교실) ;
  • 전만중 (, 영남대학교 의과대학 부속병원 산업의학과, 영남대학교 의과대학 예방의학교실) ;
  • 홍윤철 (서울대학교 의과대학 예방의학교실) ;
  • 이철갑 (조선대학교 의과대학 예방의학교실) ;
  • 하미나 (단국대학교 의과대학 예방의학교실) ;
  • 권호장 (단국대학교 의과대학 예방의학교실) ;
  • 사공준 (, 영남대학교 의과대학 부속병원 산업의학과, 영남대학교 의과대학 예방의학교실)
  • Published : 2011.06.30

Abstract

Objectives: This study was conducted to evaluate association between computerized neurobehavioral performance and blood lead concentration in Korean elementary school students. Methods: The subjects were 1,077 elementary school students of Seoul, Busan, Daegu and Gwangju. Blood lead concentration was measured and computerized neurobehavioral performance tests were performed. Results: Blood lead concentration of the subjects was in the range of 0.20 and 7.39 ${\mu}$g/dl. The geometric mean of the subjects' blood lead concentration was 1.41 ${\mu}$g/dl. As blood lead concentration increased, reaction time to the symbol digit tended to increase significantly and linearly. As a result of LOWESS(locally weighted scatterplot smoothing), increasing reaction time to the symbol digit was observed. Conclusions: As blood lead concentration under the CDC (center for disease control and prevention) reference value increased, reaction time to the symbol digit tended to increase. But, as the number of subjects over 3 ${\mu}$g/dl is small, it is difficult to make a definite conclusion. If confounding variables are controlled properly in a follow-up study, we can obtain a more definite conclusion.

목적: 이 연구는 전국 초등학생을 대상으로 혈중 납 농도를 측정하고, 컴퓨터 신경행동검사를 실시하여 초등학생의 혈중 납 농도와 신경행동기능의 관련성을 평가하고자 하였다. 방법: 전국의 8개 초등학교 1학년생 1,077명을 대상으로 혈중 납 농도를 측정하고, 컴퓨터 신경행동검사(단순 반응시간, 선택반응시간, 숫자더하기, 부호숫자 짝짓기)를 실시하였다. 결과: 대상 초등학생들의 혈중 납 농도는 0.02-7.39 $\mu$g/dl 사이에 모두 분포하고 있었으며, 기하평균은 1.41 $\mu$g/dl. 신경행동검사 중 부호숫자 짝짓기 항목에서 혈중 납 농도가 증가할수록 반응시간이 증가하는 경향을 보였다. 결론: CDC 권고 수준인 10 $\mu$g/dl 이하의 혈중 납 농도에서 신경행동검사 중 부호숫자 짝짓기의 반응시간이 증가하는 경향이 있었지만, 3 $\mu$g/dl 이상의 대상자가 적어서 명확한 결론을 내리기는 어렵다. 향후 추적관찰 연구를 통하여 혼란변수들을 적절히 통제한다면 혈중 납 농도와 소아들의 신경행동기능과의 관련성에 관해 더욱 타당하게 평가할 수 있을 것이다.

Keywords

References

  1. US EPA. America's children and the environment-Measures of contaminants, body burdens, and illness 2nd Ed. Washington DC. 2003.
  2. Krasnegor NA, Otto DA, Bernstein JH, Burke R, Chappell W, Eckerman DA, Needleman HL, Oakley G, Rogan W, Terracciano G, Hutchinsonet L. Neurobehavioral test strategies for environmental exposures in pediatric populations. Neurotoxicol Teratol 1994;16:499-509. https://doi.org/10.1016/0892-0362(94)90129-5
  3. Olden K, Guthrie J. Children's health: A mixed review. Environ Health Perspect 2000;108:250-1. https://doi.org/10.1289/ehp.108-a250
  4. Hayes EB. The hazard of lead to children. In Brook SM: Environmental Medicine. Mosby-Year Book Inc. St. Louis. 1995. pp 383-97.
  5. Bellinger DC, Leviton A, Waternaux C. Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development. N Engl J Med 1987;316(17): 1037-43. https://doi.org/10.1056/NEJM198704233161701
  6. McMichael AJ, Baghurst PA, Wigg NR, Vimpani GV, Robertson EF, Roberts RJ. Port Pirie cohort study: environmental exposure to lead and children's abilities at the age of four years. N Engl J Med 1988;319(8):468-75. https://doi.org/10.1056/NEJM198808253190803
  7. Lanphear BP, Dietrich K, Auinger P, Cox C. Cognitive deficits associated with blood lead concentrations <10 micrograms/dL in U.S. children and adolescents. Public Health Reports 2000;115(6):521-9. https://doi.org/10.1093/phr/115.6.521
  8. Tuthill RW. Hair lead levels related to children's classroom attention-deficit behavior. Arch Environ Health 1996;51(3):214-20. https://doi.org/10.1080/00039896.1996.9936018
  9. Minder B, Das-Smaal EA, Brand EF, Orlebeke JF. Exposure to lead and specific attentional problems in schoolchildren. J Learn Disabil 1994;27(6):393-9. https://doi.org/10.1177/002221949402700606
  10. Needleman HL, Schell A, Bellinger D, Leviton A, Allred EN. The long term effects of exposure to low doses of lead in childhood: an 11-year follow-up report. N Engl J Med 1990;322(2):83-8. https://doi.org/10.1056/NEJM199001113220203
  11. Needleman HL, Riess JA, Tobin MJ, Biesecker GE, Greenhouse JB: Bone lead levels and delinquent behavior. JAMA 1996;275(5):363-9. https://doi.org/10.1001/jama.1996.03530290033034
  12. Henderson AR. The bootstrap: a technique for data-driven statistics. Using computer-intensive analyses to explore experimental data. Clin Chim Acta 2005;359(1-2):1-26. https://doi.org/10.1016/j.cccn.2005.04.002
  13. Ludbrook J. Issues in biomedical statistics: comparing means by computer-intensive tests. Aust N Z J Surg 1995;65(11):812-9. https://doi.org/10.1111/j.1445-2197.1995.tb00567.x
  14. Donald T. Wigle. Child Health and the Environment. Oxford University Press, Inc. New York. 2003. pp 7-14.
  15. Jacqueline Moya BS, Cynthia F. Bearer, Ruth A. Etzel. Children's Behavior and Physiology and How It Affects Exposure to Environmental Contaminants. Pediatrics 2004;113(4):996-1006.
  16. Rodier PM. Developing brain as a target of toxicity. Environ Health Perspect 1995;103(Suppl 6):73-6.
  17. Weiss B, Landrigan PJ. The Developing Brain and the Environment: an introduction. Environ Health Perspect 2000;108(Suppl 3):373-4.
  18. Singer R. The neurotoxicity screening survey. Van Nostrand Reinhold. New York. 1990.
  19. Romanczyk RG. Clinical utilization of microcomputer technology. Pergamon Press. New York. 1986. pp 1-2.
  20. Lee DH, Lee YH, Kim JH, Park IG, Han TY, Jang SH. Blood lead level and intelligence among children. Korean J Prev Med 1995;28(1):373-85. (Korean)
  21. Lee CR, Yoo CI, Lee JH, Lee H, Kim YH. Trend of changes in the level of blood lead, urinary arsenic and urinary cadmium of children in Ulsan; 3-year follow-up study. Korean J Prev Med 2001;34(2):166-74. (Korean)
  22. Yu SD. Preliminary study on environmental exposure and health effect. National Institute of Environmental Research. Seoul. 2001. (Korean)
  23. Otto DA, Skalik I, House DE, Hudnell HK. Neuro behavioral evaluation system (NES): comparative performance of 2nd-, 4th-, and 8th-grade Czech children. Neurotoxicol Teratol 1996;18(4):421-8 https://doi.org/10.1016/0892-0362(96)00036-0
  24. Sakong J. Development of Computerized Neurobehavioral Test for Screening of Occupational Neurologic Disease and Establishment of Norm Database. Ministry of education, science and technology. Seoul. 2004.(Korean)
  25. Tellez-Rojo MM, Bellinger DC, Arroyo-Quiroz C, Lamadrid-Figueroa H, Mercado-Garcia A, Schnaas- Arrieta L, Wright RO, Hernandez-Avila M, Hu H. Longitudinal associations between blood lead concentrations lower than 10 microg/dL and neurobehavioral development in environmentally exposed children in Mexico City. Pediatrics 2006;118(2):e323-30. https://doi.org/10.1542/peds.2005-3123
  26. Bellinger DC, Needleman HL. Intellectual impairment and blood lead levels. N Engl J Med 2003;31:349(5):500-2.
  27. Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. Intellectual impairment in children with blood lead concentrations below 10$\mu$g per deciliter. N Engl J Med 2003;348:1517-26. https://doi.org/10.1056/NEJMoa022848
  28. Lanphear BP, Dietrich K, Auinger P, Cox C. Cognitive deficits associated with blood lead concentrations <10 micrograms/dL in U.S. children and adolescents. Public Health Reports 2000;115(6):521-9. https://doi.org/10.1093/phr/115.6.521
  29. Surkan PJ, Zhang A, Trachtenberg F, Daniel DB, McKinlay S, Bellinger DC. Neuropsychological function in children with blood lead levels <10 microg/dL. Neurotoxicology 2007;28(6):1170-7. https://doi.org/10.1016/j.neuro.2007.07.007
  30. Mazumdar M, Bellinger DC, Gregas M, Abanilla K, Bacic J, Needleman HL. Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study. Environ Health 2011;10:24. https://doi.org/10.1186/1476-069X-10-24
  31. Wasserman GA, Factor-Litvak P. Methodology, inference and causation: environmental lead exposure and childhood intelligence. Arch Clin Neuropsychol 2001;16(4):343-52.
  32. Caldwell BM, Bradley RH. Home observation for measurement of the environment. University of Arknsas. Little Rock. 1984.