DOI QR코드

DOI QR Code

Synthesis of Pyronyl Derivatives as Resveratrol Analogues and Their Inhibitory Effects on Nitric Oxide and PGE2 Productions

  • Kim, Min-Hwan (Department of Pharmaceutical Science & Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Shin, Ji-Sun (Department of Pharmaceutical Science & Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Lee, Kyung-Tae (Department of Pharmaceutical Science & Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Lee, Yong-Sup (Department of Pharmaceutical Science & Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University)
  • Received : 2010.07.06
  • Accepted : 2010.09.15
  • Published : 2011.01.20

Abstract

Keywords

References

  1. Oberyszyn, T. M. Front. Biosci. 2007, 12, 2993-2999. https://doi.org/10.2741/2289
  2. Vane, J. R.; Mitchell, J. A.; Appleton, I.; Tomlinson, A.; Bishop-Bailey, D.; Croxtall, J.; Willoughby, D. A. Proc. Natl. Acad. Sci. USA. 1994, 91, 2046-2050. https://doi.org/10.1073/pnas.91.6.2046
  3. Yun, H. Y.; Dawson, V. L.; Dawson, T. M. Crit. Rev. Neurobiol. 1996, 10, 291-316. https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20
  4. Hinz, B.; Brune, K. J. Pharmacol. Exp. Ther. 2002, 300, 367-375. https://doi.org/10.1124/jpet.300.2.367
  5. Burns, J.; Yokota, T.; Ashihara, H.; Lean, M. E. J.; Crozier, A. J. Agric. Food. Chem. 2002, 50, 3337-3340. https://doi.org/10.1021/jf0112973
  6. Rimando, A. M.; Kalt, W.; Magee, J. B.; Dewey, J.; Ballington, J. R. J. Agric. Food. Chem. 2004, 52, 4713-4719. https://doi.org/10.1021/jf040095e
  7. Sanders, T. H.; McMichael, R. W., Jr.; Hendrix, K. W. J. Agric. Food. Chem. 2000, 48, 1243-1246. https://doi.org/10.1021/jf990737b
  8. Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.; Beecher, C. W.; Fong, H. H.; Farnsworth, N. R.; Kinghorn, A. D.; Mehta, R. G.; Moon, R. C.; Pezzuto, J. M. Science 1997, 275, 218-220. https://doi.org/10.1126/science.275.5297.218
  9. Subbaramaiah, K.; Chung, W. J.; Michaluart, P.; Telang, N.; Tanabe, T.; Inoue, H.; Jang, M.; Pezzuto, J. M.; Dannenberg, A. J. J. Biol. Chem. 1998, 273, 21875-21882. https://doi.org/10.1074/jbc.273.34.21875
  10. Tsai, S. H.; Lin-Shiau, S. Y.; Lin, J. K. Br. J. Pharmacol. 1999, 126, 673-680. https://doi.org/10.1038/sj.bjp.0702357
  11. Bradamante, S.; Barenghi, L.; Villa, A. Cardiovasc. Drug Rev. 2004, 22, 169-188. https://doi.org/10.1111/j.1527-3466.2004.tb00139.x
  12. Trela, B. C.; Waterhouse, A. L. J. Agric. Food Chem. 1996, 44, 1253-1257. https://doi.org/10.1021/jf9504576
  13. Bi, X. L.; Yang, J. Y.; Dong, Y. X.; Wang, J. M.; Cui, Y. H.; Ikeshima, T.; Zhao, Y. Q.; Wu, C. F. Int Immunopharmacol. 2005, 5, 185-93. https://doi.org/10.1016/j.intimp.2004.08.008
  14. Cho, D.-I.; Koo, N.-Y.; Chung, W. J.; Kim, T.-S.; Ryu, S. Y.; Im, S. Y.; Kim, K.-M. Life Sciences 2002, 71, 2071-2082. https://doi.org/10.1016/S0024-3205(02)01971-9
  15. Heynekamp, J. J.; Weber, W. M.; Hunsaker, L. A.; Gonzales, A. M.; Orlando, R. A.; Deck, L. M.; Vander Jagt, D. L. J. Med. Chem. 2006, 49, 7182-7189. https://doi.org/10.1021/jm060630x
  16. Kang, S. S.; Cuendet, M.; Endringer, D. C.; Croy, V. L.; Pezzuto, J. M.; Lipton, M. A. Bioorg. Med. Chem. 2009, 17, 1044-1054. https://doi.org/10.1016/j.bmc.2008.04.031
  17. Meng, X. L.; Yang, J. Y.; Chen, G. L.; Zhang, L. J.; Wang, L. H.; Li, J.; Wang, J. M.; Wu, C. F. Int Immunopharmacol. 2008, 8, 1074-1082. https://doi.org/10.1016/j.intimp.2008.03.011
  18. Meng, X.-L.; Yang, J.-Y.; Chen, G.-L.; Wang, L.-H.; Zhang, L.-J.; Wang, S.; Li, J.; Wu, C.-F. Chemico-Biol. Interact. 2008, 174, 51-59. https://doi.org/10.1016/j.cbi.2008.04.015
  19. Park, J. H.; Min, H.-Y.; Kim, S. S.; Lee, J. Y.; Lee, S. K.; Lee, Y. S. Arch. Pharm. 2004, 337, 20-24. https://doi.org/10.1002/ardp.200300791
  20. Kang, S. S.; Kim, H. J.; Jin, C.; Lee, Y. S. Bioorg. Med. Chem. Lett. 2009, 19, 188-191. https://doi.org/10.1016/j.bmcl.2008.10.119
  21. Lion, C. J.; Matthews, C. S.; Stevens, M. F. G.; Westwell, A. D. J. Med. Chem. 2005, 48, 1292-1295. https://doi.org/10.1021/jm049238e
  22. Lesk, A.; Nudelman, A. Synth. Commun. 1999, 29, 1405-1408. https://doi.org/10.1080/00397919908086117
  23. Rumbo, A.; Mourino, A.; Castedo, L.; Mascarenas, J. L. J. Org. Chem. 1996, 61, 6114-6120. https://doi.org/10.1021/jo960854v
  24. Wright, J. A.; Yu, J.; Spencer. J. B. Tetrahedron Lett. 2001, 42, 4033-4036. https://doi.org/10.1016/S0040-4039(01)00563-9
  25. Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. Tetrahedron 1986, 42, 3021-3028. https://doi.org/10.1016/S0040-4020(01)90593-9
  26. Paliakov, E.; Strekowski, L. Tetrahedron Lett. 2004, 45, 4093-4095. https://doi.org/10.1016/j.tetlet.2004.03.139
  27. Kim, J. Y.; Park, S. J.; Yun, K. J.; Cho, Y. W.; Park, H. J.; Lee, K. T. Eur. J. Pharmacol. 2008, 584, 175-184. https://doi.org/10.1016/j.ejphar.2008.01.032

Cited by

  1. ChemInform Abstract: Synthesis of Pyronyl Derivatives as Resveratrol Analogues and Their Inhibitory Effects on Nitric Oxide and PGE2 Productions. vol.42, pp.22, 2011, https://doi.org/10.1002/chin.201122140
  2. Influence of Glucuronidation and Reduction Modifications of Resveratrol on its Biological Activities vol.14, pp.9, 2013, https://doi.org/10.1002/cbic.201300080
  3. Derivatives and Analogues of Resveratrol: Recent Advances in Structural Modification vol.19, pp.10, 2011, https://doi.org/10.2174/1389557519666190128093840